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Objective: Copy number variants (CNVs) are well-known
genetic pleiotropic risk factors for multiple neuro-
developmental and psychiatric disorders (NPDs), including
autism (ASD) and schizophrenia. Little is known about how
differentCNVsconferringrisk for thesameconditionmayaffect
subcortical brain structures and how these alterations relate to
the level of disease risk conferred by CNVs. To fill this gap, the
authors investigated gross volume, vertex-level thickness, and
surfacemapsof subcortical structures in 11CNVs and sixNPDs.

Methods: Subcortical structures were characterized using
harmonized ENIGMA protocols in 675 CNV carriers (CNVs at
1q21.1, TAR, 13q12.12, 15q11.2, 16p11.2, 16p13.11, and22q11.2;
age range, 6–80 years; 340 males) and 782 control sub-
jects (age range, 6–80 years; 387males) as well as ENIGMA
summary statistics for ASD, schizophrenia, attention defi-
cit hyperactivity disorder, obsessive-compulsive disorder,
bipolar disorder, and major depression.

Results: All CNVs showed alterations in at least one sub-
cortical measure. Each structure was affected by at least

two CNVs, and the hippocampus and amygdala were
affected by five. Shape analyses detected subregional
alterations that were averaged out in volume analyses. A
common latent dimension was identified, characterized by
opposing effects on the hippocampus/amygdala and puta-
men/pallidum, across CNVs and across NPDs. Effect sizes of
CNVs on subcortical volume, thickness, and local surface
area were correlated with their previously reported effect
sizes on cognition and risk for ASD and schizophrenia.

Conclusions: The findings demonstrate that subcortical
alterations associated with CNVs show varying levels of
similarities with those associated with neuropsychiatric
conditions, aswell distincteffects,with someCNVsclustering
with adult-onset conditions and others with ASD. These
findings provide insight into the long-standing questions of
why CNVs at different genomic loci increase the risk for the
same NPD and why a single CNV increases the risk for a
diverse set of NPDs.
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Subcortical brain structures play a critical role in cogni-
tive, affective, and social functions (1, 2). Large-scale inter-
national neuroimaging studies have shown that major
neurodevelopmental and psychiatric disorders (NPDs) (3),
including schizophrenia (4), major depressive disorder
(MDD) (5), bipolar disorder (6), obsessive-compulsive dis-
order (OCD) (7), autism spectrum disorder (ASD) (8), and
attention deficit hyperactivity disorder (ADHD) (9), are as-
sociated with alterations in subcortical structures (10–12).

These case-control association studies have revealed small to
moderate effect sizes on brain morphometry, which have
been interpreted as a consequence of heterogeneity at the
level of genetics and brain mechanisms (13–16).

“Genetics-first” studies, in which participants are ascer-
tained based on genetic etiology, can potentially overcome
challenges posed by the genetic and mechanistic heteroge-
neity of behaviorally defined (idiopathic) NPDs (17–19).
A growing body of literature demonstrates subcortical
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volumetric alterations associated with genetic risk for NPDs
as conferred by copy number variants (CNVs). CNVs are
major contributors to NPDs such as ASD and schizophrenia
(15, 20) but show weaker associations with bipolar disorder
(21, 22) and MDD (23). Among the CNVs included in this
study, the largest increases in risk for schizophrenia have
been documented for the 22q11.2 deletion (30- to 40-fold)
followed by 16p11.2 duplication (10-fold), 1q21.1 deletion, and
15q11.2 deletion (1.5- to 2-fold) (3, 14, 15). ASD risk is highest
for 16p11.2 deletions and duplications (10-fold), followed by
1q21.1 duplications and 22q11.2 duplications (3- to 4-fold) (3,
14, 17, 20). AllCNVsaffect cognitive ability, to varyingdegrees
(decreases between2.4 and28.8 IQpoints) (Table 1),with the
exception of 15q11.2 and 13q12.12 duplications.

Previous studies have shown that CNVs including 1q21.1-
distal (24), 16p11.2-proximal BP4-5 (25), 16p11.2-distal BP2-3
(26), 15q11.2 BP1-BP2 (27), and 22q11.2 (13) affect subcortical
structures, with mild to large effect sizes (14). Recent studies
have found a significant overlap between subcortical and
cortical alterations associated with 22q11.2 deletion carriers
and those associatedwith idiopathic schizophrenia aswell as
other psychiatric illnesses (13, 28).

Beyond volumetric measurements, shape analyses of
subcortical structures can capture differences that are pre-
dictive of disease status at a higher granularity (2, 29). Studies
have typically focused on thickness, defined by the distance
from themedial axis of each structure, and local surface area,
which is a measure of surface contraction or expansion (13,
30). Both shape measures have been shown to be highly
heritable (31, 32) and have been used to map subcortical
variation in schizophrenia (30), ASD (29), MDD (33), and
bipolar disorder (34). Thickness is a proxy for subregional
volume changes, while the relationship between surface and
volume depends on the local curvature of the region (30). For
CNVs, subcortical analyses at the vertex level have been
performed only in 22q11.2 deletion carriers (13), demon-
strating multiple clusters of regional subcortical alterations,
which were modulated by psychotic illness.

Overall, little isknownabouthowgeneticvariantsconferring
risk for psychiatric conditions affect subcortical structures.
Previous neuroimaging studies have mainly focused on indi-
vidual CNVs, making it challenging to directly compare MRI
alterationsacrossCNVsaswellastorelatetheseMRIalterations
to the level of disease risk conferred by CNVs. In particular,
while multiple CNVs confer risk for the same psychiatric
conditions (35, 36), it is unknown whether they are also as-
sociated with similar patterns of brain alterations underlain
by a common latent dimension. Similarly, it has been shown
that a common latent dimension can be identified across
psychiatric diagnoses (37), and it is unknown whether a
similar dimension may be observed for genetic risk.

Our overall aim in this study was to systematically com-
pare effect sizes and patterns of subcortical alterations as-
sociated with rare genetic risk for NPDs. Specifically, we
aimed 1) to characterize subcortical volumetric and shape
alterations in 11 CNVs, 2) to relate effect sizes of CNVs on

subcortical metrics with previously reported effects of CNVs
on risk for NPDs, and 3) to identify latent subcortical brain
morphometry dimensions across CNVs and NPDs.

To this end, we assembled the largest T1-weighted brain
MRI data set across all recurrent CNVs (N511) previously
associated with varying levels of risk for psychiatric illness
(Table 1), and characterized volume, three-dimensional
surface, and thickness maps of subcortical structures. Ef-
fect sizes for six NPDs (ADHD, ASD, bipolar disorder, MDD,
OCD, and schizophrenia) were obtained from previously
published studies from the ENIGMA consortium.

METHODS

Participants
Recurrent deletions and duplications were included in the
study if 1) the level of association between the CNV and
psychiatric conditions (or lack thereof ) as well as the effect
size on cognitive ability was previously established (15, 17, 20,
21, 38–42) and 2) MRI data were available for at least 20
carriers of the sameCNV.Thisminimumsample size of 20was
established based on the power to detect large effect sizes (14).

Clinically Ascertained Groups
CNV carriers were recruited either after being referred
for genetic testing related to the diagnosis of a neuro-
developmental disorder or as the relative (e.g., parent) of a
CNV carrier. Control subjects were defined as individuals
who did not carry any NPD-associated CNVs.

Unselected Population Group
CNV carriers were identified in the UK Biobank. Control
subjects were defined as individuals who did not carry any of
the 11 CNVs selected from this study.

Demographic details of the study participants, along with
coordinatesof eachof the 11CNVs, areprovided inTable 1and
in Table S1 in the online supplement. Signed consent was
obtainedby investigators fromeachcohort for all participants
or their legal representatives prior to the investigation. This
study, using an aggregate data set, obtained ethics approval
from CHU Sainte-Justine Hospital.

MRI Acquisition and Preprocessing
The data sample included three-dimensional T1-weighted
volumetric brain images at 0.8–1.0 mm isotropic resolution
across all sites. MRI parameters for each cohort are detailed
in the online supplement.

Subcortical Volume and Shape Segmentation
FreeSurfer, version 5.3.0, was used to segment all scans into
seven bilateral subcortical regions of interest: nucleus
accumbens, amygdala, caudate, hippocampus, putamen,
pallidum, and thalamus. The ENIGMA subcortical shape
analysis pipeline (30) (http://enigma.ini.usc.edu/protocols/
imaging-protocols/)was then applied to derive twomeasures
of shape morphometry for each subcortical region: 1) the
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radial distance, which is the distance from each vertex to the
medial curve of each region (referred to as thickness), and 2)
the logarithm of the Jacobian determinant (LogJacs), which
corresponds to the surface dilation ratio between the subject
structure and the template (referred to as surface). See the
online supplement for details.

Quality Control
Visual quality inspection was performed by the same rater
using the ENIGMA standardized quality control protocol
(13). See the online supplement for details.

Normative Modeling
Changes in brain measures with age (in control subjects; age
range, 6–80 years) were modeled using Gaussian processes
(43) and were compared with linear models (Figure 1; see

also Figure S5B in the online supplement). In subsequent
analyses, we usedGaussian process regression (GPR, fitting a
model on control subjects and using age, sex, site, and in-
tracranial volume [ICV] as covariates) to obtainWscores (GPR-
basedZ scoreswith respect to themean and standard deviation
modeled in control subjects; see Figure S1 in the online sup-
plement). See the online supplement for details.

Statistical Analysis
Linear regressionmodels (usingR, version3.6.3)wereused to
compute CNV-control differences (Cohen’s d) for each CNV
usingGPR-basedWscores.This approachwasused forCNVs
across ICV, subcortical volumes, and subcortical shape
analysis. The false discovery rate (FDR) procedure (44) was
applied within CNVs (11 CNVs by eight MRI volumes). For
subcortical shape analysis, the FDR procedure was applied

TABLE 1. Genetic, cohort, and demographic characteristics of participants in the studya

Age (years)

Locus

Start-Stop
Coordinates
(hg19) (Mb) Type nGenes Gene

Ascertainment
(Cohorts) N Mean SD Range

Sex
(M/F)

Diagnoses
(ASD/SZ/
Other)

IQ
Point
Loss

Odds
Ratio

(ASD/SZ)

1q21.1 chr1,
146.53–147.39

Del 7 CHDIL Clinical (BC, CDF,
EU, SVIP)

28 29 18 8–73 17/11 1/0/7 15 3.2/6.4

Nonclinical (UKB) 12 59 7 47–68 5/7 0/1/3
Dup Clinical (BC, CDF,

EU, SVIP)
17 35 17 8–65 9/8 1/0/4 25 5.3/2.9

Nonclinical (UKB) 13 62 6 51–72 9/4
TAR chr1,

145.39–145.81
Dup 15 RBM8 Nonclinical (UKB) 31 60 8 48–74 14/17 2.4

13q12.12 chr13,
23.56–24.88

Dup 5 SPATA13 Nonclinical (UKB) 21 62 8 50–76 11/10 0.6

15q11.2 chr15,
22.81–23.09

Del 4 CYF1P1 Nonclinical (UKB) 108 65 7 49–78 59/49 0/0/2 5.7 1.3/1.9

Dup Nonclinical (UKB) 144 64 7 46–79 77/67 0/0/6 0.9 1.8/1
16p11.2 chr16,

29.65–30.20
Del 27 KCTD13 Clinical (BC, CDF,

EU, SVIP)
78 17 11 6–54 36/42 26 14.3/1.1

Nonclinical (UKB) 4 66 3 63–70 1/3
Dup Clinical (BC, CDF,

EU, SVIP)
68 31 15 8–63 29/39 10/1/19 11 10.5/11.7

Nonclinical (UKB) 7 65 6 53–69 3/4
16p13.11 chr16,

15.51–16.29
Dup 6 NDE1 Nonclinical (UKB) 50 66 6 51–78 26/24 8.7 1.5/2

22q11.2 chr22,
19.04–21.47

Del 49 AIFM3 Clinical (BC, CDF,
UCLA)

68 14 6 6–35 33/35 8/2/31 28.8 32.3/23

Dup Clinical (BC, CDF,
UCLA)

19 17 13 6–45 6/13 2/0/8 8.3 2/0.2

Nonclinical (UKB) 7 60 11 48–80 5/2 0/0/1
Control
subjects

Clinical (BC, CDF,
EU, SVIP, UCLA)

317 26 14 6–63 142/175 1/0/23

Nonclinical (UKB) 465 64 7 47–80 245/220

a CNV chromosomal coordinates are provided inmegabases (Mb) with the number of genes encompassed in each CNV and a well-known gene for each locus, to
help recognize the CNV. Clinically ascertained participants come from five cohorts, and non–clinically ascertained participants are from theUKBiobank. Age and
sex are reported for clinical andnonclinical participants separately. The “diagnoses”column reports thenumberof participantswithASD, schizophrenia, and “other
diagnoses,”which include the following: language disorder, major depressive disorder, posttraumatic stress disorder, unspecified disruptive and impulse control
and conduct disorder, social anxiety disorder, social phobia disorder, speech sound disorder, moderate intellectual disability, specific learning disorder, gambling
disorder, bipolar disorder, conduct disorder, attention deficit hyperactivity disorder, substance use disorder, global developmental delay, motor disorder, ob-
sessive-compulsive disorder, sleep disorder, Tourette’s disorder,mood disorder, eating disorder, transient tic disorder, trichotillomania, pervasive developmental
disordernototherwise specified, specificphobia, bodydysmorphicdisorder,mathematics disorder, anddysthymicdisorder. IQpoint loss andodds ratio for autism
spectrumdisorder and schizophrenia risk were extracted fromprevious reports (3, 51). Detailed demographic characteristics are reported in Table S1 in the online
supplement. ASD5autism spectrum disorder; BC5Brain Canada (University of Montreal); CDF5Cardiff University; Del5deletion; Dup5duplication; EU516p11.2
EuropeanConsortium; nGenes5number of genes encompassedby theCNV; SVIP5Simons Variation in Individuals Project; SZ5schizophrenia; UCLA5University
of California, Los Angeles; UKB5UK Biobank.
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FIGURE 1. Normative age modeling and subcortical volume effect sizesa
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across 11CNVsby27,000vertices. The significance threshold
was set at an FDR-corrected q of 0.05. See the online sup-
plement for additional details.

Effect Sizes
Cohen’s d valueswere computedbasedon case-control linear
regression. Cohen’s d values for NPDs were extracted from
previous ENIGMA studies (4–9), referred to here as
ENIGMA’s Cohen’s d (see the online supplement). All effect
sizeswerecomputedafter regressing forage, sex, site, andICV.

For comparisons across metrics, the following maximum
effect sizeswere used: absolute Cohen’s d for ICV,maximum
absolute Cohen’s d across seven subcortical volumes, and
averageabsoluteCohen’sdof the topdecile across subcortical
shape vertices. Because the proportion of significant vertices
varied across CNVs and NPDs (due to differences in effect
and sample sizes) we chose to focus on the top decile of
Cohen’s d values for all CNVs andNPDs to avoid biases and to
provide effect sizes comparable across CNVs and NPDs.
Vertices in the top decile were identified for thickness and
surface separately and were not constrained by spatial conti-
nuity. Statistical testingof spatially correlatedCohen’s dprofiles
was performed using BrainSMASH (45, 46). See the online
supplement for details.

Quantifying Shared Variance Across CNVs and NPDs
Principal component analysis quantified shared variance
across all CNVs and NPDs. For volume, we used CNV and
NPD maps (z-scored Cohen’s d contrasts adjusted for ICV
andnuisancevariables); for vertices,westacked the thickness
and surface maps and ran a single analysis (using the Fac-
toMineR package in R). As a sensitivity analysis, we ran
separate analyses for CNVs and for NPDs (see Figure S11 in
the online supplement). For additional details and methods,
see the online supplement.

RESULTS

Effects of CNVs on Subcortical Volumes
Six of the 11 CNVs had significant effects on ICV. Opposing
effects were observed for deletions and duplications at the
same loci for 1q21.1-distal, 15q11.2, 16p11.2-proximal, and
22q11.2 (Figure1B).Nineof the 11CNVshadsignificanteffects
on subcortical volumes. The largest effectswere observed for
22q11.2 deletions, followed by 16p11.2-proximal, 1q21.1-distal
deletions and 1q21.1-distal, 16p11.2-proximal duplications
(Figure 1B). Every structure was affected by at least two
CNVs, and the hippocampus and amygdala were affected by
five CNVs.

Sensitivity analysis testing the effect of 1) the presence or
absence of a psychiatric diagnosis, 2) site effects, and 3) av-
eraging left and right subcortical volumes demonstrated that
the results were robust (see Figures S3–S5 in the online
supplement). In addition, the Cohen’s d values for 22q11.2
deletions showed high concordance (r50.93, p50.002) with
previously published results from a much larger overlapping

sample (13) (N568 vs. N5430 deletion carriers; see Figure
S5A in the online supplement).

Effects of CNVs on Thickness and Local Surface Area
To provide a more refined analysis of subcortical structures,
we used thickness (radial distance) and surface (local surface
area dilation/contraction). Shape analysis detected signifi-
cant group differences across all CNVs, with both higher and
lower thickness and local surface area relative to the control
groups (Figure 2; see also Figure S6 in the online supple-
ment). The CNV-control analyses for 22q11.2 deletions and
TAR duplications provided the highest and lowest number
of significant vertices, respectively (see Tables S4–S7 in the
online supplement). For each CNV, the largest number of
significant vertices was observed for thickness in the cau-
date and for surface in the thalamus, hippocampus, and
caudate (see Tables S4–S7 in the online supplement). A
significant mirror effect at the vertex level was observed
between deletions and duplication for only one locus
(16p11.2).

Because surface and thickness showed a positive corre-
lation across most vertices in control subjects, we present a
simplified map representing concordant effects on surface
and thickness (see Figure S7 in the online supplement).
Vertices with the largest concordant increases were ob-
served in the thalamus for 16p11.2-proximal deletions and in
the head of the caudate for the 22q11.2 deletions. The largest
concordant decreases were observed in the body and tail of
the caudate, the tail of the thalamus for 16p11.2-proximal
duplications, and both the head and tail of the hippo-
campus for 22q11.2 deletions (see Table S8 in the online
supplement).

Effect sizes of CNVs on thickness and surface were concor-
dant with those reported for volume (concordance correlation
coefficients, 0.68 [p50.006] and0.57 [p50.02], respectively), but
were higher on average (bias factor, 0.88 and 0.85, respectively)
(see Figure S9 and Table S3 in the online supplement).

CNV Effect Sizes on Subcortical Volume/Shape,
Cognition, and Risk for Disease
Wefound that the effect sizes ofCNVson subcortical volume,
thickness, and surface were two- to sixfold larger than those
previously published in the ENIGMA studies of idiopathic
ADHD, ASD, bipolar disorder,MDD, OCD, and schizophrenia
in volume and of MDD and schizophrenia in shape metrics
(e.g., the largest effects for 22q11.2 deletion/schizophrenia
were 0.92/0.46 for volume, 1.03/0.39 for thickness, and 1.24/
0.34 for surface; see Table S2 in the online supplement).

We then investigated whether CNV effect sizes were
related to their effects on cognition and disease risk. We
observed a significant correlation between the effect size of
CNVs on subcortical volume, thickness, and surface and their
previously reported effect size on IQ (3, 38, 47) (r values,
0.66–0.75; p values,,0.03) as well as risk for either ASD (3, 20,
48, 49) or schizophrenia (3, 15, 49) (r values, 0.69–0.89;
p values,,0.03) (Figure 2C).The resultswere comparable after
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FIGURE 2. Cohen’s d maps for subcortical shape analysis and effect size comparisona

r=0.69
p=0.02

r=0.75
p=0.008

r=0.66
p=0.03

r=0.69
p=0.03

r=0.89
p=0.001

r=0.74
p=0.01

Volume Surface

CNV Effect Size for IQ

CNV Odds Ratio for ASD/SZ CNV Odds Ratio for ASD/SZCNV Odds Ratio for ASD/SZ

CNV Effect Size for IQ

C
N

V
 E

ff
e

c
t 

S
iz

e
 o

n

S
u

b
c

o
rt

ic
a

l 
M

e
a

su
re

s

CNV Effect Size for IQ

Thickness

DEL 1q21.1 DEL 15q11.2 DEL 16p11.2 DEL 22q11.2 DUP 13q12.12 DUP TAR

DUP 1q21.1 DUP 15q11.2 DUP 16p11.2 DUP 22q11.2 DUP 16p13.11

DEL 1q21.1 DEL 15q11.2 DEL 16p11.2 DEL 22q11.2 DUP 13q12.12 DUP TAR

DUP 1q21.1 DUP 15q11.2 DUP 16p11.2 DUP 22q11.2 DUP 16p13.11 Structure Labels

–1 –0.5 0.50 1

20 30100 20 30100 20 30100

20 30100 20 30100 20 30100

A. Surface Cohen’s d Maps

B. Thickness Cohen’s d Maps

C. Subcortical Effect Sizes vs. IQ Loss and Disease Risk

Del
Dup

Del
Dup

R

A

L

P

1.5

1.0

0.5

0.0

C
N

V
 E

ff
e

c
t 

S
iz

e
 o

n

S
u

b
c

o
rt

ic
a

l 
M

e
a

su
re

s

1.5

1.0

0.5

0.0

a PanelsAandBareCohen’sdmapsof subcortical shapealterations in surfaceand thickness, respectively, for 11CNVs (dorsal view). Significant verticesare
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the exclusion of 22q11.2 loci (see Figure S8 in the online sup-
plement). Effect size on subcortical structure was also corre-
lated with the gene content (measured by probability of being
loss-of-function intolerant [pLI] or number of genes) of each
CNV (see Figure S9 in the online supplement). On the other
hand, CNV effect sizes on ICVwere not significantly associated
with cognition (see Figure S9 in the online supplement).

Comparing Cohen’s d Profiles of CNVs and NPDs
Because CNVs are pleiotropic, conferring risk for multiple
neuropsychiatric conditions (50), we investigated whether
there were any similarities between profiles of subcortical al-
terations across CNVs and NPDs. We correlated subcortical
volume effect sizes across CNVs and NPDs and performed
a hierarchical clustering analysis (using Ward’s method).
Schizophrenia was part of a cluster that included bipolar dis-
order, MDD, OCD, 22q11.2 deletions, and 1q21.1-distal du-
plications. This cluster was negatively correlated with the
cluster encompassing ASD, 16p11.2-proximal deletions,
15q11.2 deletions, 15q11.2 duplications, and 13q12.12 dupli-
cations. ADHD did not cluster with any of the conditions or
CNVs (Figure 3A).

However, there was no clear relationship between the
level of ASD or schizophrenia risk conferred by CNVs and
their clustering with those two conditions (correlation be-
tween CNV risk for ASD and CNV-ASD clustering: r520.14,
p50.7; correlation between CNV risk for schizophrenia and
CNV-schizophrenia clustering: r50.59, p50.07) (see Figure
S11 in the online supplement).

Subcortical Latent Dimensions Across CNVs and NPDs
To investigate the clusters observed above, we performed a
principal component analysis on profiles of subcortical
volume effect sizes. The first two principal components
(PCs)explained45%and28%of thevariance inCohen’sdvalues,
which was higher than what is expected by chance (see
Figure S16 in the online supplement). Dimension 1 of the
NPDs and CNVs showed positive and negative loadings for
the basal ganglia (pallidum, putamen) and limbic system
(thalamus, hippocampus, amygdala), respectively (Figure 3C).
ThesecondPCdimensionwascharacterizedbytheaccumbens
and thalamus loading on both extremes. Five clusters were
obtained by running K-means clustering using PC1 and PC2,

with cluster 3 corresponding to adult NPDs, clusters 4 and
5corresponding toADHDandASD, respectively, andclusters
1 and 2 to CNVs. These groupings were reflected in the
correlation matrix of Cohen’s d profiles (Figure 3A). To test
whether CNVs and NPDs separately resulted in similar
dimensions, we performed independent principal
component analyses on NPDs and CNVs. Latent dimen-
sions (PCs) of both analyses were highly correlated with
each other (r values,20.93 to20.83) (see Figure S12 in the
online supplement).

Latent Dimensions Across Subcortical Shape Metrics of
CNVs and NPDs
To understand potentially shared and distinct effects across
CNVs, we performed a multivariate analysis (principal
component analysis) on Cohen’s d maps of both subcortical
thickness and local surface area for 11 CNVs, and ENIGMA
maps for schizophrenia andMDD (Figure 4; see also Figure
S13 in the online supplement). Given data availability, only
schizophrenia and MDD were included here. The two first
PCs explained 35% of the variance, which was higher than
what is expected by chance (see Figure S16 in the online
supplement).

PCs identified positive and negative loadings for regions
within the same structures. Ventral and dorsal regions
showed distinct patterns of alterations. Alterations were
mostly bilateral except for the thalamus. As an example, for
PC1, verticeswith concordant effects (same directionality for
thickness and surface) suggested a decrease in subregional
volumes of the body and an increase in the head and tail of
the caudate. For the hippocampus, most vertices with con-
cordant alterations suggested a volume decrease in the body,
but focal increases were also observed in the head (PC1) and
tail (PC2) (Figure 4E–H; see also Table S9 in the online
supplement).

Comparing principal component analysis results across
subcortical metrics shows that structures contributing to the
latent dimension for volume are, on average, also those
contributing to latent dimension for surface and thickness
(see Figure S14 in the online supplement). Lower variance
explained for shape analyses suggests that shared
Cohen’s d profiles may decrease when moving from gross
volume to measures with higher granularity (see Figures S15

surface areadilationor contraction. Blue andgreen indicatenegativecoefficients, or regionswith reduced thickness in theCNVgroupcomparedwith the
control group. Redand yellow indicatepositive coefficients, or regionswith increased thickness in theCNVgroupcomparedwith thecontrol group.Gray
regions indicate areas of no significant difference after correction for multiple comparisons. Each vertex was adjusted for sex, site, age, and ICV. Ventral
views are shown in Figure S6 in theonline supplement.Covarianceandoverlap between surface and thickness at the vertex level are shown in Figure S7 in
the online supplement. Panel C presents a comparison of effect sizes of CNVs on subcortical volume and shapemetrics and previously published effect
sizes on cognition and disease risk. Regression lines were fitted using the geom_smooth function in R. Pearson correlation and p values (using the
parametric cor.mtest function in R) are shown for eachmetric. The x-axis reports the IQ loss (in IQpoints) and the odds ratios for ASDor schizophrenia as
reported in Table 1; the values range between 0 and 30. IQ loss (in IQ points) and odds ratio for ASD and schizophrenia risk were extracted from previous
reports (3, 51). Plots excluding22q11.2 loci,which showedsimilar results, arepresented inFigure S8 in theonline supplement. In addition, plots comparing
the effect sizes of CNVs and the number of genes within CNV and the probability of being loss-of-function intolerant (pLI sum) for genes within CNV, as
well as ICVmetrics, arepresented inFigureS9 in theonline supplement.Concordanceofeffect sizesofCNVsonsubcortical shapemetricsandsubcortical
volume are shown in Figure SF10 in the online supplement. A5anterior; ASD5autism spectrum disorder; CAUD5caudate; CNV5copy number variant;
DEL5deletion; DUP5duplication; FDR5false discovery rate; HIP5hippocampus; ICV5intracranial volume; L5left; P5posterior; PAL5pallidum;
PUT5putamen; R5right; THAL5thalamus.
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and S16 in the online supplement). To formally test this
hypothesis, we randomly sampled a smaller number of
vertices and reran the principal component analysis. The
resulting analysis shows that variance explained for

surface1thickness by twoprincipal components decreases
from 52% (for 10 vertices), to 32% (1,000 vertices) and
stabilizes from 1,000 to 2327,200 vertices for surface1
thickness (see Figure S17 in the online supplement).

FIGURE 3. Correlations and principal component analysis across CNVs and NPDsa
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DISCUSSION

In this large neuroimaging study characterizing and com-
paring subcortical alterations associatedwith 11CNVsandsix
NPDs, we detected effects on subcortical volumes in nine of
11 CNVs. Analyses at a higher granularity using shapemetrics

showed that these effects were localized to subregions of the
subcortical structures. The effect sizes of CNVs on subcor-
tical structures were correlated with their previously
reported effect sizes on cognition and risk for ASD and
schizophrenia. That is, larger and gene-rich CNVs (e.g.,
22q11.2 and 16p11.2-proximal), which showhigher risk for

FIGURE 4. Correlations and principal component analysis across vertex-wise Cohen’s d maps of CNVs and NPDsa
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disease, also showed greater alterations of subcortical
structures. Cohen’s d values for CNVs were larger than
those derived from case-control association studies for
groups of individuals with a psychiatric condition. In line
with the pleiotropic effects of CNVs on risk for multiple
NPDs, we identified latent dimensions explaining 44.7%
of the variance in Cohen’s d maps across all CNVs and
NPDs. Latent dimensions were defined by opposing
loadings on basal ganglia and limbic structures.

Two CNVs—1q21.1 deletion and 15q11.2 duplication—
showed FDR-significant effects on ICV only. The 15q11.2
duplication has not yet been associated with NPDs, so this is
consistent with no detectable effects on subcortical volumes.
The 1q21.1 deletion increases the risk for ASD and schizo-
phrenia anddecreases cognitive abilitywithmoderate tomild
effect sizes, and our study may therefore have been under-
powered to detect its effects on subcortical structures.

All 11 CNVs showed significant effects on subcortical
thickness and local surface area. The largest effects across
metrics were observed for 22q11.2 deletions. Hippocampus
volumewas altered by five CNVs and had the largest number
of significant vertices for surface across CNVs. The effect
sizes of CNVs on volume, surface, and thickness were cor-
related with the previously reported mean effect size of each
CNV on cognition and risk for disease. The same correlation
has been reported between effect sizes of CNVson functional
connectivity metrics and cognition and risk for diseases (51).
However, there was no relationship between effect sizes on
ICV and risk for disease or cognition (14). When comparing
across metrics, we found that the vertex-level shape analysis
showedhighercorrelations,whichsuggests that increasing the
granularity of analysis could enhance our understanding of the
brain-behavior relationships. Studying brain-behavior rela-
tionships in unselected populations has proven to be chal-
lenging, and results have produced very small effect sizes (52).
Asopposed tofitting anaverageMRIpatternacross a cognitive
dimension, our alternative genetics-first approach provides a
much stronger correlation by working with multiple MRI
profiles associatedwith each genetic variant and its respective
behavioral alterations. In otherwords, this allows one tomove
from single to multiple modes of brain-behavior associations.

Most of the variance inCNV-associatedCohen’s d profiles
for subcortical alterations was distinct for each CNV. This is
consistent with a recent study showing relative specificity of
CNV-associated morphometric cortical alterations (53). The
amountof variance explainedby the two topPCs (33%)across
CNV-associated shape alterations is similar to that explained
by latent dimensions (32% and 29%) previously published for
cortical thickness and surface area across eight CNVs (54).
These shared effects across CNVs, regardless of brain mea-
sures analyzed, suggest that CNVs may share some brain
mechanisms. Overall, this may explain why CNVs may be
associated with distinct clinical features while many also
increase the risk for the same condition (36).

Extending the principal component analysis across CNVs
and NPDs identified components similar to those described

above, defined by opposing loadings on basal ganglia and
limbic structures. Basal ganglia and limbic structures were
previously identified as structures delineating different
schizophrenia subtypes using data-driven approaches (34).
These shared Cohen’s d profiles may explain some of the
pleiotropic effects of CNVs (i.e., why all NPD CNVs increase
risk for either ASD or schizophrenia, or for both conditions).
Subcortical structures with top PC loading include basal
ganglia structures known to be primarily involved in motor
control (55), as well as limbic structures involved in higher-
order functions, includingmotivation, emotion, learning, and
memory. This reflects an organization principle previously
observed in the cortex from simple sensory processing to
high-order processing regions (56, 57).

Our findings also suggest significant heterogeneity across
CNVs and NPDs. CNVs showed either little or even negative
correlations with NPDs. The latter tend to cluster among
themselves, except for ASD and ADHD (37). For example,
16p11.2 duplications—which increase risk for schizophrenia
and ASD—showed effects on subcortical shapes that were
negatively correlated with those observed for idiopathic ASD.
This could suggest that within a group of individuals with the
same psychiatric diagnosis, some may show opposing MRI
alterations. In addition, while effect sizes of CNVs on sub-
cortical structures were correlated with risk, there was no
concordance between the level of ASD or schizophrenia risk
conferred by CNVs and the similarity between their subcor-
tical profiles. This highlights, again, multiple modes of brain-
behavior association underlying the heterogeneity of brain
patterns associated with a psychiatric condition.

While some structures showed no significant differences
at the gross volume level, shape analyses of the same
structures revealed regions of lower aswell as greater surface
area and thickness. For example, while the volume of the
caudate has small loading on PCs, subregions of the caudate
were top contributors to PCs of shape metrics. This finding
highlights the relevance of analyzing subcortical structures
at the vertex level, which may identify alterations that are
averaged out at the gross volumetric level.

Subregions of the hippocampus that were among the top
contributors to the principal component analysis performed
across CNVs were also previously reported in shape analysis of
MDD (33) and schizophrenia (30). The observed shape dif-
ferences have been reported to reflect patterns of neuronal
deficits in postmortem studies of individuals with schizo-
phrenia (30). For example, the mixed findings for caudate—
increasesanddecreases for shapemetrics in subregions—reflect
findings frompostmortem studies showing both larger (58) and
smaller disease-related changes in total neuron number (59).
The PC1 loadings of gross volume correlated with mean PC
loadings for shape analysis, reflecting a consistent latent di-
mension. The microscopic reductions in neuron size or total
number of neurons, which reflect shape differences, may man-
ifest inmacroscopic reductions involumemeasuredbyMRI(30).

While shared variation could have been influenced by
clinical ascertainment or psychiatric diagnoses, sensitivity
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analyses showed that this is not the case, consistent with
previous reports (54). Larger sample sizes with improved
coverage across all age ranges would increase the accuracy of
the normative modeling (60), as would better estimation of
effect sizes forCNVswithsmall tomoderateeffect sizes.Direct
comparison of shape metrics between CNVs and psychiatric
conditions is required to identify latent dimensions across
CNVs and conditions and will be the focus of future studies.

In summary, effect sizes of CNVs on subcortical struc-
tures were correlated with their effect size on cognition and
risk for disease. Shape analyses highlighted subregional
volume alterations thatwere averaged out in global volume
analyses. Principal components captured common effects
on subcortical volumes across CNVs, and NPDs may un-
derlie someof the pleiotropic effects ofCNVs. Basal ganglia
and limbic structures that contributed to the latent di-
mension for volume are also those that contributed to the
latent dimension for surface and thickness.
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Examination Questions for “Subcortical Brain Alterations in Carriers of 
Genomic Copy Number Variants”

1. What are the common subcortical volume alterations observed across most 

conditions and CNVs?

A. A dimension characterized by opposing eff ects on the hippocampus/amygdala and 

putamen/pallidum, only across CNVs.

B. A dimension characterized by opposing eff ects on the hippocampus/amygdala and 

putamen/pallidum, across CNVs and across NPDs.

C. A dimension characterized by similar eff ects on the hippocampus/amygdala and 

putamen/pallidum, across CNVs and across NPDs.

D. A dimension characterized by similar eff ects on the hippocampus/amygdala and 

putamen/pallidum, only across CNVs.

2. What is the correlation between eff ect sizes of CNVs on subcortical brain structures 

and their eff ect sizes on cognition and risk for ASD and schizophrenia?

A. There is no correlation between eff ect sizes of CNVs on subcortical brain structures 

and their eff ect sizes on cognition and risk for ASD and schizophrenia.

B. Eff ect sizes of CNVs on subcortical brain structures are negatively correlated with 

their eff ect sizes on cognition and risk for ASD and schizophrenia.

C. Eff ect sizes of CNVs on subcortical brain structures are positively correlated with 

their eff ect sizes on cognition and risk for ASD and schizophrenia.

D. The study did not investigate the correlation between eff ect sizes of CNVs on 

subcortical brain structures and their eff ect sizes on cognition and risk for ASD and 

schizophrenia.

3. Regarding the brain alterations associated with genetic risk for NPDs and idiopathic 

NPDs, which is the correct answer?

A. The study’s fi ndings suggest that genetic risk for NPDs (CNVs) shows no similarities 

with idiopathic NPDs.

B. The study’s fi ndings suggest a relationship between the level of NPD risk conferred 

by CNVs and the similarity between their subcortical profi les

C. The study’s fi ndings suggest that all CNVs conferring risk for NPD tend to show 

subcortical alterations positively correlated with the subcortical alterations 

associated with the NPD.

D. The study’s fi ndings suggest the presence of heterogeneity in the relationships 

between CNVs and NPDs.
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