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ARTICLE INFO ABSTRACT

This work presents an efficient framework, based on manifold approximation, for generating brain fingerprints
from multi-modal data. The proposed framework represents images as bags of local features which are used to
build a subject proximity graph. Compact fingerprints are obtained by projecting this graph in a low-dimensional
manifold using spectral embedding. Experiments using the T1/T2-weighted MRI, diffusion MRI, and resting-state
fMRI data of 945 Human Connectome Project subjects demonstrate the benefit of combining multiple modalities,
with multi-modal fingerprints more discriminative than those generated from individual modalities. Results also
highlight the link between fingerprint similarity and genetic proximity, monozygotic twins having more similar
fingerprints than dizygotic or non-twin siblings. This link is also reflected in the differences of feature corre-
spondences between twin/sibling pairs, occurring in major brain structures and across hemispheres. The
robustness of the proposed framework to factors like image alignment and scan resolution, as well as the
reproducibility of results on retest scans, suggest the potential of multi-modal brain fingerprinting for charac-

Keywords:

Brain fingerprinting
Multi-modal data
Bag-of-Features
Manifold approximation
sMRI-dMRI-rfMRI

HCP Twin data

terizing individuals in a large cohort analysis.

1. Introduction

Despite sharing gross similarities, individual brains show a significant
amount of variability (Gordon et al., 2017a) in terms of structure
(Mangin et al., 2004), function (Barch et al., 2013; Gordon et al., 2017b;
Mueller et al., 2013), and white matter architecture (Biirgel et al., 2006;
de Schotten et al., 2011). Recently, various studies have focused on
characterizing this variability using brain fingerprints, for instance, based
on shape (Wachinger et al., 2015), functional connectivity (Finn et al.,
2015; Liu et al., 2018), white matter fiber geometry (Kumar et al., 2017),
or voxel-wise diffusion density (Yeh et al.,, 2016a). These studies are
motivated by the fact that brain characteristics are largely determined by
genetic factors that are often unique to individuals (Thompson et al.,
2013). Moreover, various neurological disorders like Parkinson (Gee-
varghese et al., 2015) and autism (Goldman et al., 2013) have been
linked to specific brain abnormalities that are difficult to describe at the

population level. With the rapid improvements in MRI acquisition
hardware and analysis tools, and thanks to large brain-related initiatives
like the Human Connectome Project (HCP) (Van Essen et al., 2013) and
UK Biobank (Sudlow et al., 2015), researchers are better poised to study
individual subjects in addition to groups (Dubois and Adolphs, 2016;
Gordon et al., 2017c), thus taking a step towards precision medicine
(Hampel et al., 2017) and precision psychiatry (Finn and Constable,
2016).

The importance of brain fingerprinting is evident from the recent
surge in studies on this topic. For example, Yeh et al. (2016a,b) built a
local connectome fingerprint using dMRI data and applied this finger-
print to the analysis of genetically-related subjects. Kumar et al. (2017)
proposed another dMRI-based fingerprint called Fiberprint, which char-
acterizes white matter fiber geometry. Finn et al. (2015) considered the
correlation between time courses of atlas-defined nodes to generate a
functional connectivity profile and used this profile to identify
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individuals across scan sessions, both for task and rest conditions. Liu
et al. (2018) use dynamic brain connectivity patterns for identifying in-
dividuals and predicting higher cognitive functions. Moreover, Mir-
anda-Dominguez et al. (2014) proposed a linear model to describe the
activity of brain regions in resting-state fMRI as a weighted sum of its
functional neighboring regions. Their functional fingerprint, derived
from the model's coefficients, has the ability to predict individuals using a
limited number of non-sequential frames.

Various morphometry-based fingerprints have also been proposed for
structural MRI modalities like T1- or T2-weighted images. For example,
Wachinger et al. (2015) quantify the shape of cortical and subcortical
structures via the spectrum of the Laplace-Beltrami operator. The
resulting representation, called Brainprint, is used for subject identifica-
tion and analyzing potential genetic influences on brain morphology.
Toews et al. (2010) represent images as a collection of localized image
descriptors and apply scale-space theory to analyze their distribution at
the characteristic scale of underlying anatomical structures. This repre-
sentation is employed to identify distinctive anatomical patterns of
genetically-related individuals or subjects with a known brain disease.

So far, fingerprinting studies in the literature have focused on a single
modality. However, each modality captures unique properties of the
brain and combining multiple modalities can provide a richer, more
discriminative information (Calhoun and Sui, 2016; Groves et al., 2012).
Hence, the fusion of multiple modalities has been shown superior than
single-modality data to identify diseases like schizophrenia, bipolar dis-
order, major depressive disorder and obsessive-compulsive disorder
(Calhoun and Sui, 2016). Multi-modal neuroimaging biomarkers have
also been proposed to predict cognitive deficits in schizophrenia (Sui
et al., 2015). Similarly, the combination of multiple MRI modalities has
led to the improved segmentation of isointense infant brain images
(Zhang et al., 2015). Multi-modal imaging data can also be used to pre-
dict the brain-age of subjects and detect cognitive impairments (Liem
et al., 2017). Detailed reviews on multi-modal methods and in-
vestigations for psychopathology can be found in Calhoun and Sui (2016)
and Liu et al. (2015a,b).

Due to the challenges of combining multiple modalities in a single
framework (Calhoun and Sui, 2016; Liu et al.,, 2015b), defining a
multi-modal brain fingerprinting remains to this day an elusive task.
Morphometry-based approaches, such as Brainprint (Wachinger et al.,
2015), could potentially be extended to other modalities like dMRI.
However, this requires solving non-trivial problems such as the
cross-modality alignment of images with different resolutions, the seg-
mentation and correspondence of neuroanatomical structures, etc.
Computational efficiency is another important issue when dealing with
large-scale, multi-subject and multi-modal datasets like the Human
Connectome Project (HCP) (Van Essen et al., 2013) and UK Biobank
(Sudlow et al., 2015). In this work, we propose a multi-modal brain
fingerprinting that overcomes these challenges using manifold approxi-
mation. The key idea is to represent each image as a bag of local features,
and derive a subject-level proximity graph using feature correspondences
over the entire set of images (Toews et al., 2010). This subject proximity
graph provides an approximation of the image appearance subspace (i.e.,
the manifold), which can be used to obtain a compact fingerprint
representation.

Manifold learning has been extensively studied in machine learning
(Bengio et al., 2013) with many approaches like Isomap (Tenenbaum
et al., 2000), Locally Linear Embedding (LLE) (Roweis and Saul, 2000)
and Spectral Embedding (Belkin and Niyogi, 2003)proposed over the
years. As detailed in Aljabar et al. (2012), such techniques have also been
used for various problems of medical imaging like registration, seg-
mentation, and classification. For example, in Gerber et al. (2010),
Gerber et al. use manifold learning to perform a population analysis of
brain images. Similarly, a deep learning based approach is explored in
Brosch et al. (2013) to learn the manifold of brain MRIs. A key factor in
such methods is image representation. For instance, the manifold could
be approximated using the Euclidean distance between image pairs,
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however, this would not be robust to translation, rotation or scaling, and
would suffer from high computational costs.

Representations based on local features, often referred to as bag of
features (BoF), offer an efficient alternative for encoding and matching
image structures without the stringent requirement of one-to-one corre-
spondence (Lowe, 2004; Tsai, 2012). In brain imaging, BoFs have been
shown to automatically identify known structural differences between
healthy controls and Alzheimer's subjects in a fully data-driven fashion
(Toews et al., 2010). They have also been used successfully to model the
development of infant brains (Toews et al., 2012) and align images of
different modalities (Toews and Wells, 2013). Despite their numerous
advantages, BoFs have thus far not been explored for brain finger-
printing. This is mainly due to their large and variable size, which makes
comparing two fingerprints non-trivial.

The key contributions of this work are as follows:

e Novel framework: We propose a data-driven approach based on
BoFs and manifold approximation that combines the information
from multiple imaging modalities into a common fingerprint. By
embedding BoFs in a low-dimensional manifold, the proposed
approach circumvents the problem of variable representation size,
and provides a compact description of brain structure that enables
efficient comparisons across subjects. Furthermore, we show how this
manifold-based approach can be used to encode non-structural brain
characteristics, for instance, modeling functional connectivity profiles
from fMRI. To our knowledge, this is the first work to combine
structural, diffusion, and functional modalities in a single fingerprint.
Large-scale analysis: We present a comprehensive analysis of the
proposed fingerprint using a large-scale dataset from the Human
Connectome Project (HCP), where numerous properties/factors are
investigated: fingerprint parameters (e.g., manifold dimensionality
and proximity graph connectivity), contribution of individual mo-
dalities and/or their combination to the fingerprint's discriminative-
ness, robustness to image alignment and scan resolution, and
reproducibility of results with re-test or corrupted scans. Using
genetically verified zygosity labels from the HCP twin dataset, we also
analyze the proposed fingerprint's ability to identify genetically-
related subjects (i.e., monozygotic twins, dizygotic twins and non-
twin siblings) from a large cohort, and show our multi-modal
fingerprint to outperform single-modality approaches or finger-
prints based on raw images. In an analysis of local feature corre-
spondences, we identify for individual modalities the
neuroanatomical regions having the most significant differences
across groups of genetically-related subjects, between males and fe-
males, and across brain hemispheres.

This study extends our preliminary work in Toews and Wells (2016)
and Kumar et al. (2018), where BoF representations were used to identify
and compare subjects in a population. Here, we show how these
variable-length representations can be converted to fixed-sized finger-
prints via manifold embedding, and present an out-of-sample strategy to
generate fingerprints for new subjects. While our previous work only
considered structural and diffusion MRI data, the current study also in-
vestigates the benefit of including fMRI-based information, as well as
different combinations of sMRI, dMRI, and fMRI data. Additionally, it
offers a much deeper analysis where the impact of multiple factors like
the inclusion of skull tissue, image alignment, and scan resolution is
evaluated. The present study also complements the recent work of Col-
clough et al. (2017), which analyzes the heritability of functional con-
nectivity profiles from multi-modal data (i.e., fMRI and MEG) using the
HCP twin dataset. Unlike this recent work, our study analyzes the rela-
tionship between genetic proximity and fingerprint similarity based on a
rank retrieval analysis and shows that a higher retrieval accuracy can be
obtained when combining structural, diffusion, and functional imaging
data.

The rest of this paper is organized as follows. We first present the
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Fig. 1. Pipeline of the proposed framework and
analysis. For a given input image, a BoF representation
is first obtained by extracting local features. This
representation is then converted to a fingerprint by
matching features across the entire set of images, and
embedding the resulting proximity graph into the
manifold. The manifold approximation block shows
the 2D embedding coordinates (i.e., fingerprint) of
HCP subjects (red dots) obtained with T1w (top), FA
(bottom) and combined Tlw + FA (middle) images.
The fingerprints of a specific subject (blue dot), his/

ing
Identification

4. Fingerprint
Analysis

Single vs her monozygotic twin (MZ, cyan dot) and full sibling
Multi-modal (FS, green dot) are highlighted in each plot. The
fingerprint pairwise feature matches of these two sibling pairs, for
T1w and FA images, are shown in the corner images of

the block.

proposed multi-modal brain fingerprinting framework, detailing the data
pre-processing steps, the BoF representation and proximity graph
computation, as well as the manifold embedding of this graph. In Section
3, we then conduct an extensive experimental validation using the T1-
weighted, T2-weighted, diffusion-weighted MRI, and resting-state fMRI
data of 945 subjects from the HCP dataset. Finally, we conclude with a
summary of our contributions and a discussion of possible extensions.

2. Materials and methods

Fig. 1 summarizes the pipeline of the proposed multi-modal brain
fingerprint framework, which is comprised of four steps. In the first step,
we start with pre-processed structural MRI (sMRI) and diffusion MRI
(dMRI) data of 945 subjects from the Human Connectome Project (Van
Essen et al., 2012, 2013). Diffusion Tensor Imaging (DTI) and General-
ized Q-Ball Imaging (GQI) based Diffusivity measures are obtained from
dMRI scans, including: fractional anisotropy (FA), axial diffusivity (AD),
mean diffusivity (MD), radial diffusivity (RD) and generalized fractional
anisotropy (GFA). The second step then extracts local features from the
images of each subject and encodes subjects as a bag of features (BoF). In
the third step, the multi-modal fingerprints of subjects are computed
using manifold approximation. Towards this goal, a subject-level prox-
imity graph is first constructed by matching the features of each modality
across images and identifying pairs of subjects with a high number of
correspondences. Fingerprints are then obtained by embedding this
graph in a low-dimensional subspace. In the last step, we perform various
analyses on the subject fingerprints. The informativeness of individual
modalities and their link to genetic proximity are first measured in a
twin/sibling identification analysis. This analysis is then extended to
multi-modal fingerprints, showing the combined effect and comple-
mentarity of multiple modalities. Resting state fMRI network matrices
and FreeSurfer derived measures of volume, thickness, and area provided
by HCP are also used for fingerprint analysis. Finally, the distribution of
feature correspondences between pairs of subjects is used to identify
regions showing significant differences across different sibling types. The
following subsections describe each of these steps in greater detail.

2.1. Data and pre-processing

We used the pre-processed structural and diffusion MRI data, and the
resting state fMRI network matrices of 945 subjects from the HCP1200
release of the Human Connectome Project (Van Essen et al., 2013). The
retest data of 42 subjects (out of 45 available) from the same dataset were
also considered in our study to evaluate reproducibility. The HCP1200
release provides genetically-verified labels for twins and siblings, and is a
rich resource to analyze the importance of environmental and genetic
influences for traits, phenotypes, and disorders (Kochunov et al., 2015;
Van Essen et al., 2012). Table 1 provides the demographic details of the
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Table 1

Demographics. We considered the HCP1200 release subjects with structural MRI,
diffusion MRI, and resting-state fMRI netmats data, and for which the HasGT
field is true (genetically verified data). The family structure and links are ob-
tained from the output of hep2blocks.m script listed in data release manual. The
sibship sizes are between 1 and 6.

Gender Age Handedness
Type Total
F M Range (median) L R
All 945 501 444 22-36 (29) 84 861
Mz 238 138 100 22-36 (30) 19 219
DZ 126 70 56 22-35 (29) 13 113
NotTwin 581 293 288 22-36 (28) 52 529

subjects used in this study.

Data were acquired on a Siemens Skyra 3T scanner (Sotiropoulos
et al., 2013) and pre-processed as described in Glasser et al. (2013). The
structural acquisitions include high resolution T1-weighted (T1w) and
T2-weighted (T2w) images (0.7 mm isotropic, FOV =224 mm, ma-
trix = 320, 256 sagittal slices in a single slab), the diffusion acquisition
used following parameters: sequence = Spin-echo EPI; repetition time
(TR) = 5520 ms; echo time (TE) = 89.5 ms; resolution =1.25 x 1.25 x
1.25mm? voxels, and the resting-state fMRI acquisition involved four
15 min runs at 2 mm isotropic resolution and a repetition time of 0.72's
(4800 vol per subject). Further details can be obtained from the HCP1200
data release manual. We used the hep2blocks.m script (described in the
HCP1200 release) to generate a FamilyID based matrix, only considering
subjects having dMRI, sMRI, and rfMRI netmats data, and for which the
HasGT field is true. Using this selection criterion, we obtained a total of
238 monozygotic (MZ) subjects, 126 dizygotic (DZ) subjects, and 581
non-twin subjects. The sibship size ranged between 1 and 6. In a next
step, using the mother ID, father ID, family ID and family type informa-
tion from the output of hcp2blocks.m script, we obtained 119 mono-
zygotic twin pairs, 63 dizygotic twin pairs, 546 full-sibling (FS) pairs, 39
maternal half sibling (MHS) pairs, and 5 paternal half sibling (PHS) pairs.
These pairs are used for twin/sibling identification task in the following
sections.

For structural MRI, we considered T1-weighted (0.7 mm) and T2-
weighted (0.7 mm), with and without skull. The images are in native
space and skull stripped, unless explicitly specified. In the case of dMRI
data, signal reconstruction was performed with the freely available DSI
Studio toolbox (Yeh et al., 2010) using the Diffusion Tensor Imaging
(DTI) and Generalized Q-Ball Imaging (GQI) reconstruction options. Four
widely used DTI-based measures were extracted to characterize white
matter micro-structure: fractional anisotropy (FA), axial diffusivity (AD),

1 https://www.humanconnectome.org/documentation/S1200/.


https://www.humanconnectome.org/documentation/S1200/

K. Kumar et al.

mean diffusivity (MD) and radial diffusivity (RD). The interpretation of
these measures is discussed in Alexander et al. (2007). In addition, to
utilize the multi-shell information and high angular resolution of the HCP
data, Generalized Q-Ball Imaging (GQI) (Yeh et al., 2010) based measures
including generalized fractional anisotropy (GFA) and quantitative
anisotropy (QA) were also obtained. For resting state fMRI, we used the
connectivity matrices (netmats), provided by the HCP 1200 release,
derived using the FSLNets toolbox, either via full correlation or the
partial correlation (Smith et al., 2015), the latter being calculated by
inverting the covariance matrix. For analyzing the impact of alignment,
we also used the MNI space aligned data for T1-weighted (0.7 mm) and
T2-weighted (0.7 mm) provided by the HCP 1200 release. In addition, to
combine structural modalities with dMRI, and to analyze the impact of
scan resolution, we re-sampled T1- and T2-weighted images to a 1.25 mm
resolution using the linear registration (FLIRT) tool of FSL (Jenkinson
et al., 2012). Finally, our analysis also considered FreeSurfer derived
measures of sub-cortical volumes, cortical thickness, and area, as well as
T1lw/T2w MRI ratio images (0.7 mm, myelin content information).

2.2. Multi-modal brain fingerprint

Generating brain fingerprints of subjects based on their multi-modal
data involves multiple steps: extracting local descriptors in images to
build a bag of features (BoF) representation of subjects, building a subject
proximity graph by comparing their BoF representations, and embedding
this graph in a low-dimensional manifold. Additionally, once the mani-
fold has been constructed, an out-of-sample extension strategy is required
to compute the fingerprint of new subjects.

2.2.1. Bag of feature (BoF) representation of subjects

In the first step, a set of local descriptors (Lowe, 2004) is obtained
from each available image (3D scan). Various local feature extraction and
representation approaches (Tuytelaars et al., 2008) can be used, for
example, Scale Invariant Feature Transform (SIFT) (Lowe, 1999) or
Speeded UP Robust Features (SURF) (Bay et al., 2006). In this work, we
use 3D SIFT descriptors as they have been well studied for neuro-image
analysis (Toews et al., 2010, 2015; Toews and Wells, 2013) and can be
computed efficiently.

3D keypoints are located in the scans of each subject by finding the
local extrema (i.e., maxima or minima) of the difference of Gaussians
(DoG) occurring at multiple scales. Keypoints with a low contrast or
corresponding to edge response are discarded, and remaining ones are
encoded into a feature vector (i.e, the descriptor) using the histogram of
oriented gradients (HOG) within a small neighborhood. Note that these
descriptors are robust to changes in illumination, scale, and rotation, and
are thus efficient for comparing images acquired using different scanners
or imaging parameters. Each subject is then represented as an orderless
bag of features (BoF), containing all the descriptors found in this subject's
scans. This representation provides a simple, robust and extensible way
of incorporating data from multiple modalities.

2.2.2. Subject proximity graph

Because the BoFs of two subjects may contain different numbers of
descriptors, they are difficult to compare directly. To circumvent this
problem, we construct an intrinsic manifold of subject appearance using
a nearest-neighbor (NN) graph in feature space. In this graph, each
descriptor is represented by a node and is connected to its K most similar
appearance descriptors based on Euclidean distance. The K-nearest
neighbors of each descriptor can be computed in sublinear time, for
example, using randomized KD-search trees (Muja and Lowe, 2009). This
feature graph is then used to induce a subject proximity graph by
considering, for each pair of subjects, the number descriptors in their BoF
that are linked in the feature graph.

Let ;" and }" be the BoFs (i.e., set of descriptors) of subjects i and j
for modality m € .4, where .« is the set of available modalities. The
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similarity between these subjects is evaluated as

Yomeu|[ B N B} Yomen| B VB! o
Sij = - - = - - ~ — )

Soedl 0| S| 2] +| 2| - |20 2))
where |27 N %}m‘ is the number of edges in the feature graph between

m

nodes in .%;

and those in %". When using a single modality, this
measure corresponds to the well-known Jaccard similarity. Here, we
extend it to a multi-modal setting by comparing the descriptors of each
modality separately. We note that the Jaccard distance, defined as one
minus the Jaccard similarity, is a metric and thus well-suited for con-
structing the manifold.

When defining the feature graph, K determines the number of
nearest-neighbor connections for each descriptor. In manifold learning
approaches, this parameter controls the locality of the manifold
approximation at each point (Bengio et al., 2013). Its value should be
large enough to capture the manifold's local structure, but also restricted
so that distances to nearest-neighbors are close to the geodesic. In our
experiments, we tested K € {10, 20, 30, 40,50} and found similar results
for these values. In what follows, we report results obtained with K = 20.

2.2.3. Manifold embedding

A manifold embedding technique is used to obtain compact brain
fingerprints from the subject proximity graph. While various approaches
could be employed for this task, for instance, Isomap (Tenenbaum et al.,
2000) or locally linear embedding (LLE) (Roweis and Saul, 2000), we
performed the embedding using Laplacian Eigenmaps (Belkin and
Niyogi, 2003). This technique, which is connected to the well-known
Laplace-Beltrami operator, has the advantage of being efficient and
allowing out-of-sample extensions.

In Laplacian eigenmaps, each subject i is mapped to a coordinate
vector x; € R¥ of the manifold, whose dimension k is a user parameter.
The embedding of subjects in the manifold is made such that two subjects
i and j with a high similarity s; will be close to one another. Let § € R™"
be the adjacency matrix of the subject proximity graph, as defined in Eq.
(1), and denote as L = D — S the Laplacian of S, where D is a diagonal
matrix containing the row sums of S. The embedding is accomplished by
solving the following problem:

arg miny Z ZSUHX, - X_/-HZ =tr(X'LX), s.t. X'DX =1 @
=1 j=1

The constraint on X removes an arbitrary scaling factor in the

embedding. As described in Belkin and Niyogi (2003), the solution to this

problem is given by the leading k eigenvectors of the normalized adja-

cency matrix S = DSD3, starting from the second one.> Once
computed, the rows of the matrix X correspond to the n subject finger-
prints of size k.

2.2.4. Out-of-sample extension

The manifold embedding technique described above computes the
fingerprint of all subjects at once. If new subjects are added, this process
must be repeated over again, which is inefficient and changes the
fingerprint of previous subjects. To alleviate these problems, we use an
out-of-sample extension of Laplacian eigenmaps, based on the Nystrom
method (Bengio et al., 2004; Fowlkes et al., 2004).

Suppose we want to compute the manifold embedding of m new
subjects. The first step is to update the nearest-neighbor feature graph
with the local descriptors of these new subjects, leaving unchanged the
nearest-neighbors of the n base subjects. We then evaluate the pairwise
similarities between new subjects and the base ones. Let P € R™™ be the

2 The first eigenvector contains constant values.
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matrix containing these similarities, the adjacency matrix of the extended
subject proximity graph Sy, € R™™* (M) s given by

S P} 3)

s[5 2]
Using the formula in Belkin and Niyogi (2003), the matrix Q of

similarities between new subjects can be approximated as PTS™'P.
To normalize Sey, we compute the vector of row sums

)

where s, p, € R" contain the row sums of S and P, respectively, and p. €
R™ contains the column sum of P. In the case where m is small compared
to n, we have that s, ~ s, + p,, and thus dex can be approximated as

S, + D,

dexe = |:P _,’_Prsflp (C)]

dex = |: )

sr
p. + PTS"pJ'
This strategy, used in O'Donnell and Westin (2007) for white matter
fiber segmentation, allows preserving the previous embedding of base
subjects. Let Dy be the diagonal matrix with entries corresponding to
d.y, the normalized adjacency matrix of the extended subject graph is

calculated as S, = D;(%t Sext D;(%t. The extended embedding is then ob-
tained following Nystrom's method as

]

where UAUT is the eigen decomposition of S, and P is the normalized
submatrix in Sex corresponding to P. Hence, the embedding of base
subjects is the same as in Section 2.2.3, and new subjects are embedded
as P'UA~. Once more, a fingerprint of size k is obtained by considering
only the k leading eigenvectors in matrix U, ignoring the constant
eigenvector.

U

Xou = {ﬁU A\ ®

2.3. Computational efficiency

Computational and memory requirements are key factors when per-
forming large-scale analyses. In this section, we evaluate these re-
quirements for the main steps of the proposed framework. To highlight
the efficiency of encoding images with local descriptors, we also compare
our framework to a simple fingerprint using full images as features. Other
aspects like scan resolution and image alignment requirements are dis-
cussed in Section 3. All experiments were performed on a 3.6 GHz pro-
cessor with 32 GB RAM.

For the BoF representation of images, we extracted 3D SIFT features
using a publicly available tool.> Computing these features took about 3 s
per image, and approximately 60 min for all 945 images, when processed
sequentially. This runtime could, however, be reduced significantly by
processing images in parallel. The feature matching routine (Muja and
Lowe, 2009), for generating the subject proximity graph from the BoFs of
all images, required around 5min to complete. In comparison, calcu-
lating the sum of squared distances (SSD) between full images took 1.7 s
on average for a single pair, and 760,000 s for all (945 x 944)/2 = 446,
040 pairs (with parallel computations). In terms of memory, each BoF file
is approximately 400 KB in size, compared to 84 MB on average for a
NIfTI volume file. In summary, the proposed framework is highly effi-
cient in terms of computational and memory requirements compared to a
baseline fingerprint using full images. Moreover, since computing the
subject proximity graph has a complexity in O(NlogN) where N is the
number of images, and because extending the manifold embedding can
be done efficiently using the Nystrom method, our framework is scalable

3 http://www.matthewtoews.com/.
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to large datasets.

2.4. Evaluation measures

To measure the link between fingerprint similarity and genetic
proximity, we performed a rank retrieval analysis using the sibling in-
formation provided in the HCP dataset. In this analysis, we try to identify
the twins/siblings of a given subject by comparing its fingerprint with
that of all other subjects in the group. Another goal of this analysis is to
provide a common platform for the quantitative comparison of individual
modalities and their combination. Two standard performance metrics for
rank retrieval are used to evaluate the fingerprints: mean recall@k and
mean average precision (MAP) (Turpin and Scholer, 2006).

Given a subject i, we rank all other subjects by the similarity (i.e.,
inverse of Euclidean distance) of their fingerprint to that of subject i.
Denote as .7 ; the set of target siblings/twins of subject i. For instance, if
the target group is non-twin siblings (NT), then .7; contains the siblings
of subject i that are not his/her twin. Moreover, let . be the set con-
taining the k subjects with fingerprints most similar to that of i (i.e., the k
nearest neighbors of i). For a given value of k, we evaluate the retrieval
performance using the measures of recall@k and precision@k:

|7inz

T.n.g*
(recall@k), = ———, :

(precision@k), = —
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Mean recall@k, also known as sensitivity, evaluates the proportion of
individuals that are genetically related to a given subject, which are
within the k individuals most similar to that subject (in terms of finger-
print distance). When analyzing the rank performance for a particular
sibling type (i.e., monozygotic twin, dizygotic twin or non-twin sibling),
we average values over the set of subjects which have at least one sibling
of this type, i.e. the set {i, s.t. |.7;| > 0}.

We also evaluate performance with the average precision, which
extends the above metrics by considering the rank of nearest neighbors:

1 . _
E Z (precision@k), x rel;(k)

AveP; =
i k=1

, (8

|

N

where rel;(k) is an indicator function with the value equal to 1 if the k-th
nearest neighbor of i is relevant (i.e., is in .77;), and zero otherwise. The
MAP is obtained by averaging AveP values over all subjects having at
least one sibling of the target type.

Finally, we use the d-prime sensitivity index (Gale and Perkel, 2010)
to obtain a quantitative measure of separability between the distribution
of fingerprint distances corresponding to different sibling types. Let yi1, ji5
and 61,0, be the means and standard deviations of compared distance
distributions (e.g., the distance between monozygotic twins versus be-
tween dizygotic twins). The d-prime index is computed as

o — K
\/3 (01 +03)

In our experiments, we report absolute values of d-prime, higher
values indicating better separability.

9
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3. Experiments and results

A comprehensive set of experiments was conducted to analyze the
proposed fingerprint and evaluate its usefulness in various applications.
In the first experiment, we analyze the manifold embedding of subjects
and measure the impact of manifold dimensionality on the fingerprint's
ability to capture genetic proximity. We then perform a detailed rank
retrieval analysis, in which fingerprints obtained from a single modality
or combinations of multiple modalities are used to identify three types of
genetically-related subject: monozygotic twins (MZ), dizygotic twins
(DZ) and full siblings (FS). The driving hypothesis of this experiment is
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that individual modalities capture distinct properties of brain tissues,
which can be effectively encoded in the fingerprint, and that combining
different modalities can help describe the uniqueness of individual
brains. Another goal of this experiment is to measure the relationship
between the similarity of fingerprints, for different modality combina-
tions, and genetic proximity.

In another experiment, we assess the impact of the following factors
on the proposed fingerprint: image alignment, scan resolution, inclusion
of skull, and subject age. This is followed by a reproducibility analysis,
performed with the restest scans of 42 subjects, and a comparison with a
baseline fingerprint using full images as features. The objective of these
experiments is to demonstrate the robustness and performance of the
proposed fingerprint, compared to a full image scan-based fingerprint.

We also present applications of the proposed framework for identi-
fying retest scans, duplicate corrupt scans, and incorrectly-reported
zygosity labels. In addition, we use the segmentation masks provided
with the HCP data to identify cortical and subcortical brain regions
where the distribution of feature correspondences between monozygotic
twins is significantly different from dizygotic twins. In this analysis, we
want to find brain regions which are more influenced by genetic prox-
imity. Finally, we conduct a hemisphere asymmetry analysis using the
feature correspondences for different types of siblings.

3.1. Manifold approximation analysis

To analyze the manifold approximation, we generated fingerprints by
projecting the subject proximity graph onto a varying number of spectral
components (i.e., leading eigenvectors of the normalized adjacency or
Laplacian matrix). Fingerprints were normalized by converting each
fingerprint to z-scores (centered to have mean O and scaled to have
standard deviation 1). Fig. 2 (top row) shows a representative 2D spectral
embedding of subject proximity graphs obtained using T1w, FA, or both
modalities (T1w + FA). As described in Section 2.2.2, modalities are
combined by aggregating the feature correspondences in each modality
when computing the pairwise subject similarities. In these plots, the
position of each red dot corresponds to the 2D fingerprint of a subject.
Additionally, in each plot, a single pair of MZ twins is highlighted using
blue and cyan dots and their NT sibling highlighted using a green dot.

It can be seen that the distribution of subject embeddings in the
manifold varies from T1w to FA, showing that these modalities encode
different properties in the fingerprint. Differences between the distribu-
tions of FA and T1lw + FA fingerprints are in part explained by the fact
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that spectral embeddings are defined up to a rotation or axis flipping.
Moreover, we observe for all three modality combinations that
genetically-related subjects are near to each other in the manifold, and
that MZ twins are closer than their non-twin (full) sibling.

In Fig. 2 (bottom row), we measure the impact of manifold dimen-
sionality on the fingerprint obtained with Tlw, FA or Tlw + FA mo-
dalities. The left plot shows the eigenvalues (sorted by decreasing
magnitude) of the subject proximity graph's normalized adjacency ma-
trix, which reflect the amount of connectivity information captured by
their corresponding eigenvector. This plot indicates that most informa-
tion is encoded in the first leading eigenvectors and, thus, that a compact
fingerprint is possible.

This hypothesis is further confirmed in the middle and right plots of
the same row, which evaluate for an increasing number of spectral
components (i.e., fingerprint size) how the distributions of distances
between MZ fingerprints and between DZ fingerprints differ. The sepa-
rability between these two distributions of fingerprint distances is
measured in terms of d-prime (middle plot) and unpaired t-test p-values
(in -log;, scale). In both measures, higher values correspond to a greater
separability. For all three modality combinations, a peak separability is
observed around 150 eigenvectors, suggesting this value to be suitable
for the fingerprint size. The decrease in separability for larger manifold
dimensions is due to the fact that the added eigenvectors encode small
variations of brain geometry which are not related to genetic proximity.
Nevertheless, the difference between fingerprint distances in MZ pairs
and in DZ pairs is significant with p-value < 0.01, for all tested manifold
sizes and modality combinations.

Comparing the three modality combinations, diffusion-based finger-
prints using FA images provide a higher separability than fingerprints
generated from T1lw, for all manifold sizes. For example, comparing
Euclidean distances between MZ pair vs DZ pair fingerprints computed
with 150 eigenvectors, we obtain absolute d-prime of 2.398 vs 1.848, and
p-value (unpaired t-test, -log;, scale) of 47.676 vs 31.776. However, the
separability is increased further when combining both modalities in the
fingerprint (absolute d-prime of 2.627, and -log,, p-value of 50.962), in
line with our hypothesis that multi-modal fingerprints are more
discriminative than those based on a single modality. In addition, in a
modality vs modality paired t-test comparing Euclidean distances be-
tween MZ pair fingerprints, we find -log;, p-values of 12.057 (T1w vs
FA), 21.674 (FA vs T1w + FA), and 59.865 (T1w vs T1w + FA). A similar
trend indicating the higher separability of multi-modal fingerprints was
also observed for DZ and FS.
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Fig. 2. Compact fingerprint analysis. Top row: representative 2D spectral embedding visualization, blue and cyan dots show one pair of MZ twins and green dot shows
their not twin (full) sibling; Bottom row: plots of eigenvalues (excluding the first), absolute d-prime, and -log;, (p-value) (unpaired t-test) for Euclidean distances

between MZ pair vs DZ pair fingerprints with an increasing number of eigenvectors.
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Fig. 3. Compact fingerprint comparison for genetically-related subjects. Count-density histograms (top row) and probability-normalized curves (bottom row; gamma
histogram fitting) of Euclidean distances between twin/sibling pair fingerprints using 150 eigenvectors.

Finally, Fig. 3 gives the count histograms and probability density
curves (fitted) of Euclidean distances between fingerprints of different
sibling types. To generate these results, and in all following experiments,
we used a fingerprint of 150 features (i.e., leading eigenvectors of the
normalized adjacency matrix). It can be seen that the fingerprints of MZ
twins, which share the most genetic material, are significantly more
similar than those of DZ twins or full siblings (FS). This follows the results
of various twin studies (Peper et al., 2007; Thompson et al., 2013),
highlighting the relationship between genetic proximity and anatomical
similarity. Comparison of compact fingerprints based on rfMRI (netmat),
Tlw + rfMRIL, and T1w + T2w + FA + rfMRI is reported in Supplement
material Fig. 1.

3.2. Identification of genetically-related subjects

In this section, we use genetically verified labels of the HCP dataset to
determine whether fingerprints generated using different modality
combinations can identify genetically-related individuals within a group
of subjects. For combining structural and diffusion modalities, we
considered data at 1.25 mm resolution. For resting state fMRI, we utilize
the connectivity matrices (netmats) as functional connectivity finger-
prints, and obtain the subject proximity graph (manifold approximation)
by computing pairwise Pearson correlation. The idea is to closely follow
the functional connectivity fingerprint and similarity computation
described in Finn et al. (2015) (the parcellation and dataset sizes are
different). The multi-modal combinations involving rfMRI are obtained
by a linear combination of the rfMRI subject proximity graph with the
graph derived from BoFs. Combination weights were determined by grid
search, and optimal values of evaluation measures are reported. For
measures based on FreeSurfer, we used the unrestricted csv file, consid-
ering the volume of sub-cortical structures, thickness and area measures
for cortical regions. Each of the measures were converted to z-score
across subjects and then used as a fingerprint (volume measures are first
divided by FS-IntraCranial-Vol). Subject proximity graph is approxi-
mated by computing the pairwise Pearson correlation. We refer the
reader to Section 2.4 for details on the evaluation protocol and measures.

Table 2 reports the mean average precision (MAP) values (Qk =

944) obtained in a rank retrieval of three different siblings types (MZ,
DZ and FS), using fingerprints generated from various combinations of
the following modalities*: FA, MD, GFA, rfMRI netmat (partial

4 DTI = FA + MD + RD + AD; rfMRI netmat = partial correlation and ICA-
100.

218

Table 2

Mean average precision (MAP) obtained with different modality combinations
for the identification of genetically-related subjects: monozygotic twins (MZ),
dizygotic twins (DZ) and full siblings (FS).

Mean Avg Prec

Experiment Modality
MZ DZ FS

Tlw 0.886 0160 0.128
SMRI Tow 0908 0212 0.111
FA 0964 0219  0.160
dMRI MD 0.803 0114  0.086
GFA 0968 0234 0.161
rfMRI netmat 0.968 0.352 0.205
Tlw + T2w 0970 0283 0.183
Tlw + FA 0977 0279 0210
) FA + MD 0978 0259  0.198
M‘é‘ii{“gnaﬁon Tlw + rfMRI 0.990 0460  0.279
FA + rfMRI 0.996 0472  0.301
Tlw + T2w + DTI 0994 0392  0.270
Tlw + T2w + FA + rfMRI 0.997 0.546 0.371
Skull Tmpact Tlw Skull 0.990 0305  0.230
P T2w Skull 0980 0310 0.164
Alinment Impact Tlw MNI 0.852 0087  0.101
g P T2w MNI 0827 0147 0.111
Resolution Impact 11w 1:25mm 0831 0136 0.121
P T2w 1.25 mm 0879 0173  0.132
Tlw 0.649 0079  0.052
Bascline Tow 0520 0.069  0.038
o o FA 0707 0076  0.049
P Vol + Thek + Area 0795 0172  0.106

(FreeSurfer)
Tlw 0915 0137  0.130
Retest set T2w 0.917 0.212 0.113
FA 0944 0252 0.158
Random Rand 0.005  0.005  0.006

correlation, ICA 100), and FreeSurfer volume, thickness and area mea-
sures (Vol + Thck + Area). To lighten the presentation, we only report
mean average precision (MAP) values, however, mean recall@k results
can also be found in Supplement material (Fig. 2 and Table 8). Moreover,
detailed results obtained with dMRI based measures (DTI and GQI),
rfMRI netmats, and FreeSurfer measures are described in Table 3, 4, and
5 of Supplement material, respectively. The statistical significance of
differences between MAP distributions obtained for different modality
combinations and sibling types is reported in Table 1 of Supplement
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material.

A rich and diverse set of observations can be drawn from Table 2.
Comparing modalities, we observe that rfMRI netmat yields the highest
MAP among all single-modality fingerprints, these improvements most
significant for DZ and FS. For structure-based fingerprints, T1w and T2w
provide similar performances across the different sibling types, slightly
higher MAP values obtained for MZ and DZ using T2w. Similarly, for
diffusion based fingerprints, FA and GFA provide similar performance,
both of them outperforming MD. Furthermore, higher MAP values are
obtained when combining multiple modalities, the combination of T1w,
T2w, FA and rfMRI having the best performance for all sibling types. This
applies for combinations within/across structural or diffusion modalities:
T1w + T2w outperforms T1w and T2w, FA + MD performs better than FA
and MD, T1w + FA outperforms T1w and FA, etc. Similarly, T1w + rfMRI
outperforms T1w and rfMRI, and FA + rfMRI performs better than FA and
rfMRI.

With respect to the tested sibling types, we observe MAP values be-
tween 80.3% and 99.7% when identifying MZ twins, for all modalities
and their combinations. This illustrates the high impact of genetic simi-
larity on the structural and diffusion geometry of the brain, as well as on
its functional connectivity. Comparing all sibling types, we see higher
MAP values for MZ twins compared to DZ twins or full siblings, following
the amount of genetic information shared between subjects of these
groups (Polderman et al., 2015). In contrast, performances obtained for
DZ twins and full siblings are comparable, which reflects the fact that
both sibling types have the same genetic proximity. In general, the dif-
ferences between DZ twins and full siblings were found to be not sig-
nificant in an unpaired t-test for single modalities, with T2w being the
exception (Supplement material Table 1). Similar observations can also
be drawn from mean recall@k plots and mean recall@10 values (Sup-
plement material Fig. 2 and Table 8), with combined modalities yielding
higher recall values than individual ones. In this experiment, FA gives a
higher recall than rfMRI for MZ identification, although this difference is
not statistically significant. Comparing non-twin siblings, we observe
higher MAP values for full sibling identification vs maternal half sibling
(MHS) identification (Supplement material Table 6), confirming once
again the impact of genetic proximity. However, no clear trend is found
for full sibling identification vs paternal half sibling identification (PHS),
which is mainly due to the limited sample size (i.e., the dataset contains
only 5 PHS pairs).

To quantify the informativeness of one modality versus another,
Table 3 reports the relative percentage of MZ and DZ twins identified by
both, a single, or none of the modalities.® Note that, for a given twin type,
each row provides a relative comparison between two modalities, with
the sum of the row being 100%. The total number of identification tasks
is 238 for MZ and 126 for DZ (the identification of twin 1 for twin 2 and
vice-versa are considered two separate tasks). For each task, we consider
the k = 10 nearest neighbors of a subject in terms of fingerprint distance.
The identification is considered a success if the subject's twin is identified
within these neighbors. When comparing the relative success rates of
single modalities (top half of the table), we observe that FA identifies
more twins uniquely than when using Tlw or MD. This is particularly
noticeable for DZ twins, where 27.78% of DZ pairs were identified by the
FA-based fingerprint but not the Tlw-based ones. Yet, structural mo-
dalities still capture brain tissue properties that are not provided by
dMRI, as shown by the 11.90% of all DZ pairs that are identified using
T1w but not with FA. Similar observations can be drawn when comparing
rfMRI with structural and diffusion modalities. For example, rfMRI
identifies 45.24% of DZ pairs that are not identified using T1w within 10
neighbors, while T1w identifies 19.05% unique DZ pairs.

As with the results in Table 2, we see that combining multiple mo-
dalities leads to a more discriminative fingerprint. For example, 4.20% of
MZ and 60.30% of DZ twins are identified by fingerprints generated from

5 Results for full siblings are reported in Table 7 of Supplement material.
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all modalities (i.e., All MRI = T1w + T2w + FA + rfMRI) but not from
fingerprints based only on T1w. Reversely, all MZ twins identified with
T1lw are also found using T1w + T2w + FA + rfMRI, and only 4.76% of
DZ twins are identified uniquely with T1lw. This last result could be
explained by the fact that subjects can have local similarities due to
factors not related to genetics.

3.3. Impact of various factors

Factors like image alignment, scan resolution, skull inclusion and
subject age, can be confounds when analyzing the proposed fingerprint.
In the following sub-sections, we measure the impact of these factors on
the fingerprint's ability to find genetically-related subjects.

3.3.1. Image alignment

Population-level analyses usually require aligning images to a com-
mon space or segmenting them into regions of interest, two steps which
can be computationally expensive.

Table 2 (sMRI vs alignment impact rows) reports the retrieval per-
formance obtained for fingerprints generated from T1w and T2w images
in MNI space (0.7 mm resolution, data provided by the HCP with affine
alignment to MNI template). For all sibling types, MNI space-aligned
fingerprints (denoted as MNI in the table) obtained lower MAP values
than fingerprints using native space data. This observation, which is
consistent across T1lw/T2w modalities and all sibling types, indicates
that image alignment is not required for our fingerprint. Note that similar
results were obtained using full images as fingerprints (analyzed in the
following section), with a lower MAP for affine-aligned images.

3.3.2. Scan resolution

Scan resolution is another important factor in multi-modal and multi-
subject analyses, for example, SMRI data usually offer higher resolutions
compared to dMRI.

Table 2 (sMRI vs resolution impact rows) shows that MAP values for
the MZ/DZ twin identification task decrease when going from 0.7 mm to
1.25 mm resolution, for both Tlw- and T2w-based fingerprints. This is
due in part to the reduced number of SIFT features extracted from
1.25 mm resolution images, compared to 0.7 mm resolution ones. How-
ever, this is not the case for FS identification tasks, where contrasting
trends are observed for T1w and T2w. Moreover, differences in MAP
values for the two resolutions are not significant when running an un-
paired t-test with p-value < 0.01, for any sibling type (see Supplement
material Table 2). These results suggest the robustness of our framework
to varying scan resolutions.

3.3.3. Inclusion of skull

Since skull size and shape is strongly influenced by genetics, including
skull information in fingerprints could increase their discriminative
power. In this experiment, we measure the usefulness of skull tissues for
identifying pairs of MZ, DZ and FS subjects (facial features are not
analyzed).

Table 2 reports the performances of fingerprints based on Tlw and
T2w image, with or without skull stripping. For both T1w and T2w, as
well as all sibling types, including the skull in images improves MAP
values. These results are significant with p-value < 0.01 in an unpaired t-
test (see Table 2 of Supplement material). Hence, skull tissues provides
additional feature correspondences which help identify twins and non-
twin siblings. However, we should mention that skull stripping is
essential to most neuroimaging analyses, and our objective here is only to
measure the informativeness of skull tissues on the proposed fingerprint.
An extended skull-inclusion analysis, including T1w-by-T2w MRI ratio
images (myelin content) and modality combinations are reported in
Supplement material Table 10.

3.3.4. Subject age
In twin studies, the age of subjects can be a confound when comparing
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Table 3
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Relative informativeness of fingerprints from different modalities. Comparison between modalities or their combination for the task of identification of a given sibling
type. The reported values are relative percentages of MZ/DZ twin identification for two modalities, with Mod1 representing successful identifications by modality 1
only. The total number of identification tasks is 238 and 126 for MZ and DZ respectively. Note: identification of twin 1 for twin 2 and vice-versa are considered two
separate tasks. The identification is considered a success if the twin is identified within the 10 nearest neighbors of a subject (among 944 subjects).

Identification % (MZ)

Identification % (DZ)

Experiment Mod1 vs Mod2
Both Mod1 Mod2 None Both Mod1 Mod2 None
Tlw vs T2w 93.28 2.52 3.36 0.84 12.70 13.49 19.05 54.76
Tlw vs FA 95.38 0.42 3.78 0.42 14.29 11.90 27.78 46.03
Single Modality T1lw vs rfMRI 93.28 2.52 4.20 0.00 7.14 19.05 45.24 28.57
FA vs rfMRI 96.64 2.52 0.84 0.00 26.19 15.87 26.19 31.75
FA vs MD 88.66 10.50 0.84 0.00 10.32 31.75 12.70 45.24
T1lw vs All MRI 95.80 0.00 4.20 0.00 21.43 4.76 60.32 13.49
Modality Combination T2w vs All MRI 96.64 0.00 3.36 0.00 25.40 6.35 56.35 11.90
FA vs All MRI 99.16 0.00 0.84 0.00 39.68 2.38 42.06 15.87
rfMRI vs All MRI 97.48 0.00 2.52 0.00 49.21 3.17 32.54 15.08

Note: All MRI = T1lw + T2w + FA + rfMRL

between different sibling types. For instance, DZ twins and FS siblings
share the same amount of genetic material, yet DZ twins could be more
similar due to their same age. The HCP data used in this study was ac-
quired in the age range of 22-36, which corresponds to the plateau/
saturation in brain and white matter development (Kochunov et al.,
2015; Van Essen et al., 2012). Nevertheless, we analyze whether age
differences in non-twin siblings is a contributing factor on performance.

Toward this goal, we divided FS sibling pairs in two groups based on
the median age difference of 3 years, and measured the MAP in each
group for fingerprints generated from T1w, T2w, and FA. Similarly, we
also evaluated the impact of absolute age on performance of MZ/DZ. In
this case, we divided subjects (not subject pairs) into two groups based on
the median subject age of 29 years. As shown in Supplement material
Table 9, in general, no significant differences in MAP are observed across
these groups. In summary, using the HCP dataset, we found no significant
impact of subject age on the proposed fingerprint.

3.4. Comparison to baseline fingerprint

We compared the performance of our fingerprint to a baseline using
full images as features. In this baseline, the similarity of two fingerprints
is measured as the sum of squared distances (SSD) between intensities of
corresponding voxels. Table 2 gives the MAP obtained using this base-
line, for T1w, T2w, and FA images in native subject space. For MZ twin
identification, the baseline using FA performs better than T1w or T2w,
which is consistent with the results of the proposed fingerprint. However,
we see that our fingerprint performs consistently better than the baseline,
with MAP improvements of 0.237 in T1w, 0.388 in T2w, and 0.257 in FA,
for the task of identifying MZ twins. These improvements are significant
in a one-sided unpaired t-test with p-value < 0.01 (see Supplement ma-
terial Table 2). Note that we also tested a similar baseline created from
MNI aligned images, however, this led to lower MAP values.

In addition, we used Freesurfer derived measures of sub-cortical
volumes, and thickness and area of cortical regions as other baseline
fingerprints (see Supplement material Table 5 for detailed analysis on
FreeSurfer measures). Higher MAP values are obtained for MZ twin
identification using our fingerprint vs Vol + Thck + Area FreeSurfer
(0.886 vs 0.795, p-value < 0.01). However, no significant difference is
observed for DZ and FS identification.

In summary, while much more compact and efficient (see Section
2.3), our fingerprint based on local features is significantly more infor-
mative than a voxel-based representation. It also captures additional
information on brain morphology, compared to simple measures of
cortical volume, thickness, and area, outperforming this baseline on all
identification tasks.
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3.5. Results reproducibility

To test the reproducibility of the results, we re-ran the same analysis
after replacing the T1lw, T2w and FA images of 42 subjects with their
retest data. Table 2 gives the MAP values obtained following this process.
We observe small differences in MAP, compared to fingerprints using the
original data, however, these are not significant (see Supplement mate-
rial Table 2).

We note that the majority of retest subjects available in the HCP data
are MZ twins. Since we do not observe significant differences in identi-
fying this type of twins, it shows that the results are reproducible. The
small differences in MAP values for DZ twins and FS siblings could be
attributed to slight changes in the ordering of retest subjects' nearest
neighbors.

3.6. Applications

In this section, we demonstrate the usefulness of our fingerprint on
three different applications: 1) the correction of erroneous zygosity la-
bels, 2) the detection of retest and duplicate scans, 3) the visualization
and analysis of local feature correspondences for different modalities,
sibling types and neuroanatomical regions.

3.6.1. Zygosity label correction

The Q3 release of the HCP dataset contained self-reported zygosity
labels for twins. In the HCP 1200 release, which contains genetically
verified zyosity labels, it was found that many self-reported DZ twins
were actually MZ twins. In light of this problem, we first evaluate if the
proposed framework can be used to identify the twins in large dataset
whose self-reported zygosity differs from their true zygosity.

In earlier experiments, we found higher MAP values for MZ twins.
Such siblings were always found within the 10 nearest neighbors of a
subject (i.e., a mean recall@k of 100% was obtained for k < 10, Sup-
plement material Table 8), regardless of the modality combination used
for the fingerprint. Conversely, a lower percentage of DZ twins could be
identified in these lists of nearest neighbors. Based on this idea, we find
incorrectly reported MZ candidates as the DZ twins which are within the
10 nearest neighbors of a subject.

Table 4 reports the relative percentage of DZ-to-MZ twins (56 in total)
correctly identified by the proposed fingerprint, the baseline using full
images, both or none of these methods, for T1w, T2w, and FA modalities.
The results show that our fingerprint can identify most incorrectly self-
reported MZ twins, with a detection rate of 92.86% for T1w, 100.00%
for T2w, and 100.00% for FA. For all modalities, over 32% of cases were
identified uniquely by our fingerprint. In contrast, no DZ-to-MZ twins
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Table 4

Analysis of self-reported zygosity to genetically verified zygosity detection. The
relative percentage of DZ-to-MZ twin identifications by the proposed framework
and the full-image baseline. Total number of identification tasks is 56. Identifi-
cation is considered a success if the twin is identified within the 10 nearest
neighbors of a subject.

Identification %

Modality

Both Proposed Base None
Tlw 60.71 32.15 0.00 7.14
T2w 55.36 44.64 0.00 0.00
FA 64.29 35.71 0.00 0.00

were identified uniquely by the baseline fingerprint. In conclusion, the
proposed fingerprint can be used effectively to detect misreported
zygosity labels.

3.6.2. Retest and duplicate scan identification

To analyze our fingerprint's ability to detect repeat scans of the same
subjects (acquired after a time gap), we used the data of 945
subjects + 42 retest subjects, and considered the task of identifying
repeat scan in a rank retrieval analysis.

Following the same evaluation protocol as for identifying MZ/DZ/FS
siblings, we obtained a MAP value of 1 for fingerprints generated from
T1lw, T2w or FA. Thus, in all cases, the single most similar fingerprint to
that of a subject corresponded to this subject's retest data. Moreover,
when considering the number of local feature correspondences in the
subject similarity (i.e., >

me.it
correspondences for the retest data of a subject than for the subject's MZ
twin.

Duplicate scans in a dataset, for example resulting from noise cor-
ruption, renaming or other manual errors, can introduce bias in analyses.
Therefore, we also assessed if our fingerprint could detect duplicate scans
of the same subject, corrupted by noise. For this experiment, we intro-
duced duplicate scans for 42 T1w images, to which was added random
noise (uniformly distributed random numbers in the [—a, a] range, where
a € {20,60,100,150, 200, 400}; the mean and stdev of image intensities
are respectively 720 and 185). Running a rank retrieval analysis using
these duplicates as target, we again obtained an MAP value of 1, for all
tested noise levels. As in the retest scan identification task, the number of
local feature correspondences was higher with corrupted duplicates than
with images of MZ twins. Compared to retest scans, the number of feature
correspondences was nearly half for corrupted duplicated, suggesting
that noise can reduce correspondences to some extent. Overall, the re-
sults of this experiment demonstrate that our fingerprint can preserve
brain characteristics over different scans of a subject.

in Eq. (1)), we observed more

s Nz

3.6.3. Local feature correspondence analysis

To understand the advantages and limitations of a BoF-based
fingerprint compared to voxel-wise or shape-based methods, we
perform an in-depth analysis of local feature correspondences between
subjects. In order to compare our findings with those of related finger-
print studies like Brainprint (Wachinger et al., 2015), we limit our
analysis to genetically-related subjects from HCP and to structural MRI
modalities. Other applications of BoF representations for neuro-image
analysis have been well studied in the literature (Toews et al., 2010,
2015; Toews and Wells, 2013).

We start with a qualitative visualization of pairwise feature corre-
spondences between subjects of different sibling types. The distribution
of correspondences in these modalities is then analyzed using the seg-
mentation maps (WM parcellation) files provided with HCP data.
Furthermore, we also report cortical and subcortical regions having
significantly different match distributions across sibling types, these re-
gions having a closer relationship to genetic proximity. Finally, we
perform a lateral asymmetry analysis in which the distribution of

221

Neurolmage 183 (2018) 212-226

correspondences in hemispheres are compared. Since fMRI is not
required for these analyses, we considered all subjects in the HCP twin
dataset having genetically verified labels (only 945 out of 1010 subjects
have rfMRI netmats data), giving a total of 139 MZ pairs, 72 DZ pairs, and
1214 full sibling pairs.

3.6.3.1. Scale-space visualization of features correspondences. Analyzing
local feature correspondences between sibling pairs provides information
in terms of their location as well as scale. In 3D SIFT features, scale co-
incides with the variance of a Gaussian blur kernel for which the corre-
sponding voxel in the blurred image is a local extrema (Lowe, 1999,
2004). It thus corresponds to a certain degree with the size of structures
in which these features are located.

Fig. 4 gives a scale-space visualization of features matched between a
subject and his/her MZ twin, as well as the subject's non-twin (full)
sibling, for T1w, T2w and FA images (See Supplement material Fig. 3 for
DZ and non-twin (full) sibling). The scale information is represented
using the radius of circles. Note that circles represent the intersection of
3D spheres with the visible slice and, thus, non-intersecting features are
hidden in this 2D visualization.

It can be seen that different image modalities generally result in
distinct, complementary feature correspondences throughout the brain.
In T1w and T2w images, features are mainly located in the frontal lobe,
corpus-callosum, and cerebellum. Smaller-scale features are also visible
along various cortical regions, as well as in subcortical structures near the
basal ganglia. Moreover, images based on diffusion measures have less
correspondences than in structural modalities. These correspondences
are located mostly inside or near to white matter: larger-scale features in
the corpus-callosum, and smaller-scale ones in the brain stem and along
white matter bundles. The distribution of features in prominent brain
regions is further analyzed in the next section.

Comparing different sibling types, we see a greater number of cor-
respondences between MZ twins than between DZ twins or full siblings.
This observation, which is easier to visualize in T1w and T2w images, is

T2w

Fig. 4. Example of feature correspondences for a subject and his/her MZ twin
(rows 1-2), and the subject's full sibling (FS) (rows 3-4). Scale space is repre-
sented using circle radius and color code (for the visible slice).
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consistent with other analyses on twin datasets. In terms of feature
location and scale, we observe a slightly higher number of correspon-
dences in the frontal cortex for MZ twins, however, no obvious pattern
can be drawn from one set of representative plots.

3.6.3.2. Region-wise analysis of feature correspondences. Here, we analyze
the distribution of feature correspondences across atlas-defined neuro-
anatomical regions, measured over the entire group of subjects. For each
scan, segmentation labels were obtained from the Freesurfer-processed
data, using LUT table for label descriptions.

Fig. 5 shows the box plot distributions of feature correspondences
between pairs of MZ, DZ, and full siblings, for Tlw and T2w images.
Feature match counts are reported for five broad regions: non-white
matter subcortex (s-cort), left/right cortex (crtx-lh/rh) and left/right
white matter (wm-lh/rh). Note that mapping local features to a finer
cortical parcellation is difficult due to the limited thickness of the cortex.
Subcortical regions are further analyzed below.

Comparing across sibling types, we observe a higher number of
feature correspondences for MZ pairs across all five regions and both T1w
and T2w modalities. This confirms once again that the local features
employed in our fingerprint captures brain characteristics related to ge-
netic proximity. Analyzing the region-wise distribution of feature cor-
respondences, all five regions are well represented. Since the number of
local features in a region is proportional to its size, it is not surprising that
the cortex has the least correspondences. Yet, such features are also
produced by intensity variations (i.e., edges), thus explaining why many
correspondences are found in the cortex. Finally, when comparing T1w
and T2w modalities, we see small differences in the match counts,
however these are not statistically significant.

To identify regions showing a strong relationship to genetic prox-
imity, Table 5 gives the p-values (-log;, scale) of an unpaired t-test
comparing the mean number of correspondences between subjects of a
given sibling type versus another sibling type (e.g., MZ vs DZ). Signifi-
cance values are provided for the five major regions described above, as
well as for 15 prominent subcortical structures matching the analysis by
Wachinger et al. (2015). To account for multiple comparisons (i.e., one
for each tested region), reported p-values have been corrected using the
Holm-Bonferroni procedure (Holm, 1979). Moreover, to account for age
and size bias in this analysis, we selected FS pairs with less than 3 years
age difference, and matched the number of FS pairs to MZ pairs using a
simple bipartite matching based on age.

From Table 5, we observe significant differences between MZ twins
and DZ-twins/full-siblings (i.e., corrected p-value < 0.01), for all five
major regions and for both T1lw and T2w images. In subcortical struc-
tures of T1w images, cerebellum white matter and cortex (left and right),
lateral ventricles (left and right), left hippocampus and left thalamus
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Table 5

Differences in feature match counts obtained for different sibling types in various
brain regions, using T1w and T2w. We report HolmBonferroni corrected p-values
(-log,( scale) measured using an unpaired t-test. Significant results with cor-
rected p-value < 0.01 are highlighted using bold font.

Tiw T2w
Label
MZ vs DZ MZ vs FS MZ vs DZ MZ vs FS

subcortical 29.31 50.31 26.06 39.41
Crtx-LH 22.85 35.17 23.37 38.87
Crtx-RH 21.48 39.76 25.38 37.73
WM-LH 37.64 62.83 27.88 47.38
WM-RH 23.38 36.80 21.88 32.62
L-Lat-Vent 5.84 11.34 5.31 7.50
R-Lat-Vent 4.21 10.72 3.99 7.57
L-VentralDC 1.49 6.06 5.16 2.98
R-VentralDC 0.45 0.60 0.00 0.01
R-Cerebellum-WM 3.98 15.40 0.00 0.57
L-Cerebellum-WM 4.82 11.11 2.33 6.55
R-Putamen 0.48 0.51 2.34 1.24
L-Putamen 0.87 0.35 0.06 0.30
L-Cerebellum-Crtx 5.74 6.26 5.58 13.81
L-Thalamus-Proper 2.71 4.03 0.37 0.01
4th-Ventricle 1.49 2.24 1.86 3.91
L-Hippocampus 3.23 3.76 4.61 5.85
CC-Anterior 1.83 0.51 0.40 0.71
R-Cerebellum-Crtx 5.96 11.93 3.38 7.57
3rd-Ventricle 0.45 0.51 0.37 0.43

proper have a significantly different number feature correspondences in
MZ twins than in DZ twins or FS subjects. Comparing results obtained
with Tlw and T2w, the same structures are significant across both mo-
dalities, differences in significance reflecting the complimentary of these
modalities.

3.6.3.3. Hemisphere asymmetry analysis. In our last experiment, we
analyze the symmetry of feature match counts across brain hemispheres,
for major structures. Toward this goal, we considered only right-handed
(RH) subjects, and limited sibling pairs to subjects with same gender (i.e.,
a male and his brother, or a female and her sister). For non-twin siblings,
we also restricted our analysis to subject pairs with less than 3 years of
age difference.

Table 6 gives the results of two-sided unpaired t-tests comparing the
feature match counts between cortical or white matter regions (Free-
surfer LUT labels) in left- and right- hemispheres. To analyze gender ef-
fects, we also report results individually for RH male siblings and RH
female siblings. Overall, we observe significant asymmetry in white
matter regions (with corrected p-value < 0.01) of MZ twins, the highest
significance values obtained for T2w images. No clear pattern is found
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Fig. 5. Box plot comparison between MZ, DZ, and FS for pairwise feature correspondence counts for T1w (left) and T2w (right) for major structures. Red, green and

blue correspond to MZ, DZ, and FS respectively.
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Table 6

Hemisphere asymmetry analysis. For a given modality and twin type, we
compare feature match count differences across hemisphere for major structures.
Differences are reported as HolmBonferroni corrected p-values (-log;, scale)
measured using an unpaired t-test, significant results (corrected p-value < 0.01)
highlighted using bold font.

RH Female RH Male RH Pairs
Modality Type
Crtx WM Crtx WM Crtx WM
MZ 0.95 1.20 0.15 2.57 0.87 2.73
Tiw DZ 1.05 0.78 0.35 0.99 1.12 0.06
FS 1.71 0.39 0.84 0.11 1.89 0.09
MZ 1.95 9.13 1.52 5.77 3.00 13.97
T2w DZ 1.06 3.60 1.29 1.23 1.93 4.06
FS 1.04 1.22 1.23 5.35 1.90 5.84

across sibling types, although hemispherical differences are generally
higher in MZ twins than in DZ twins or full siblings. Likewise, no
conclusion can be drawn when comparing results for male and female
sibling pairs, with significance values varying across different sibling
types and modalities.

The asymmetry of function in the brain, for example the hemispheric
specializations of language and motor functions, has been extensively
studied (Toga and Thompson, 2003). Similarly, studies have analyzed
anatomical brain asymmetries based on voxel-based morphometry, sulci
and other brain features (Wachinger et al., 2015). The multi-modal and
multi-region analysis presented in this work extends previous studies of
brain asymmetry in the literature by considering sibling types. Ac-
counting for various confounds, including gender, genetics, handedness
and age, this analysis has shown a greater asymmetry in feature corre-
spondences between MZ twins than DZ twins and full siblings, mostly
found in white matter regions and T2w images. Moreover, differences in
asymmetry appear to be directional.

4. Discussion

In this section, we summarize the findings of this study and empha-
size their link to previous investigations. We also highlight its limitations
and discuss additional considerations.

4.1. Identification of genetically-related subjects

Our experiments on the task of identifying genetically-related sub-
jects led to various useful observations. We established that the proposed
fingerprint, generated from individual modalities or their combination,
respects the genetic relationships between siblings, with MZ twins being
more similar than DZ twins or full siblings (Peper et al., 2007; Thompson
et al., 2013).

3D SIFT features (i.e., keypoints) coincide with the local extrema of a
difference of Gaussians function applied in scale space. These features
typically lie in high-contrast regions of an image, for instance due to the
boundaries between white matter and grey matter (see Fig. 4). More
generally, these features represent blob-like structures of varying size and
location, which are robust and discriminative for finding correspon-
dences across images. With respect to a voxel-wise full image compari-
son, the proposed BoF-based fingerprint offers a more compact
representation of brain geometry, which is less sensitive to differences in
image alignment and contrast. Likewise, compared to standard
morphological measures like cortical thickness or sub-cortical region
volume/area, our representation may capture a broader range of
geometrical brain characteristics, for example distinctive cortical folding
patterns only present in a subset of the population.

Analyzing the manifold approximation, we also showed that a
discriminative fingerprint could be obtained with only 150 spectral
components (i.e., leading eigenvectors of the normalized adjacency ma-
trix of the subject proximity graph). When compared to a baseline using
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full images as features, this compact fingerprint yielded significantly
better performances, for all modalities and sibling types. This illustrates
the high efficiency of our fingerprint and its advantages for comparing
large groups of subjects. Moreover, while Laplacian eigenmaps were used
to embed the subject proximity graph, the proposed framework is generic
and other approaches (e.g., see Bengio et al., 2013) can be employed for
this task.

The comparison of fingerprints obtained from structural MRI, diffu-
sion MRI, and resting state fMRI highlighted the informativeness and
complementarity of these modalities. Among individual modalities,
resting state fMRI based fingerprint performed best for DZ/FS identifi-
cation and had similar performance to FA/GFA for MZ twin identifica-
tion. As mentioned in Finn et al. (2015), this could be due to the
discriminative power of connectivity profiles, which is a result of inte-
grating imaging data over a relatively long period of time (4800 vol, and
4 runs of 15min each). The inter-individual variability in the connec-
tivity profile (rfMRI netmat) results in part from the spatial topography
(spatial variability in the location of functional regions across in-
dividuals) and functional coupling strength. However, assessing the
specific contributions of these factors is outside the scope of the current
study, and we refer readers to the works of Bijsterbosch et al. (2018) and
Gordon et al. (2017c) for further information on this topic. Moreover,
while the MAP values for FA/GFA are similar to rfMRI based MZ twin
identification, mean recall@10 and relative identification % showed that
FA performs slightly better than rfMRI (2.54% unique MZ pair identifi-
cation as opposed to 0.84% pairs).

Comparing structural and diffusion MRI modalities, we found fin-
gerprints based on FA/GFA to outperform those derived from T1lw or
T2w. We hypothesize this is caused by the pronounced contrast/magni-
tude changes in FA maps occurring at the boundary between grey matter
and white matter (e.g., endpoints of fiber bundles). As shown qualita-
tively in Fig. 4, this leads to a more evenly-distributed set of feature
matches.

Another interesting observation is the higher MAP values obtained for
the identification of DZ twins compared to full siblings, although both
sibling types have the same genetic similarity. In Supplemental material
Table 1, this difference is found to be significant for several modality
combinations (e.g., T1w + T2w + FA + rfMRI, p-value < 0.001). While
our experiments accounted for group size and age differences by
matching DZ subject pairs with FS pairs having the smallest age differ-
ences (one to three years difference), remaining age differences may
explain this observation. Further investigation is however required to
fully validate this hypothesis.

This work is motivated by the recent increase in multi-modal brain
studies. For instance, multi-modal MRI has been shown useful for the
analysis of neurodegenerative disorders (Calhoun and Sui, 2016) as well
as for identifying subjects with schizophrenia (Sui et al., 2014). Results of
this study demonstrate the usefulness of combining multiple modalities
in a brain fingerprint. The improvements due to multi-modal combina-
tion, for all the twin/sibling types, can be attributed to more compre-
hensive characterization considering structure, white matter
architecture, and functional connectivity. Thus, better performances
were obtained with a combined set of modalities than with these mo-
dalities alone. Our results are consistent with previous studies under-
lining the benefit of a multi-modal fusion (Calhoun and Sui, 2016; Groves
et al., 2012). As a note, we have focused on major observations only, the
comprehensive analysis is open to various other observations including
comparison of DTI vs GQI measures, inclusion of T1w-by-T2w MRI ratio
images, FreeSurfer measures based identification, etc.

4.2. Advantages and applicability of the proposed fingerprint

Our factor impact analysis demonstrated the robustness of the pro-
posed fingerprint to the non-alignment of images. Since image alignment
is key for most population level analysis (Dubois and Adolphs, 2016), by
alleviating this requirement, the proposed fingerprint may help save



K. Kumar et al.

computational costs and avoids errors introduced during alignment.
Experiments have also shown that scan resolution (from 0.7 mm to
1.25 mm) does not have a significant impact on results, although using
lower resolution images reduces the number detected features. Data ac-
quired from multiple sites or scanners often need to be brought to the
same resolution, introducing small errors during interpolation and
re-sampling. The proposed fingerprint may thus be of help for multi-site
studies, and pave the way to resolution-independent analyses. Lastly,
using retest scans led to no significant changes in results, further vali-
dating the robustness of our fingerprint to image acquisition. However, a
detailed analysis using multiple single-subject scans with longer
between-scan times would be required to fully confirm this claim.

The proposed rank retrieval analysis based on MAP provides a prin-
cipled approach for comparing different brain fingerprints, which could
be utilized in future studies. In this work, we used the proposed finger-
print to find incorrectly reported zygosity labels and identify retest/
duplicate scans of the same subjects. Hence, our fingerprint could serve
as an efficient and reliable tool for detecting inconsistent information in
large cohorts. Another potential application could be to provide physi-
cians with related cases in clinical settings like MCI diagnostic assistance
(Gao et al., 2015). For such large-scale content-based image retrieval
(CBIR) tasks, computational efficiency and the ability to capture subtle
differences between subjects are of high importance (Akgiil et al., 2011;
Li et al., 2018).

While various twin studies have analyzed genetic influences based on
volume, cortical thickness, surface area, and morphometry (Wachinger
et al., 2015), this is the first work to use local features and manifold
approximation for this problem. Analyzing the distribution of features
correspondences across brain regions, in images of different modalities,
reveals many interesting insights. Results identify various neuroana-
tomical regions (e.g., cerebellum, lateral ventricles, ventral dienceph-
alon, hippocampus and thalamus proper) having significantly different
match counts in MZ twins than DZ twins or full siblings. These findings
relate to those reported in Wachinger et al. (2015), which were obtained
on a different dataset (mean subject age of 56 years, compared to a
median of 29 years in the HCP dataset). Another key aspect of our
analysis is the size of the subject cohort, larger than that of related studies
(Peper et al., 2007).

4.3. Limitations and additional considerations

In this work, we used a rank retrieval analysis to evaluate the relation
between fingerprint similarity and genetic proximity. Mean recall@k and
mean average precision (MAP) were employed to measure sensitivity,
specificity, and relative informativeness of fingerprints generated from
different modality combinations. However, estimating heritability
directly, for instance using the approach described in Ge et al. (2016),
would provide a better quantification of genetic influence on fingerprint
features. In Elliott et al. (2017), Elliott et al. considered the data of over
8,000 from the UK Bio-bank (Sudlow et al., 2015) to determine the
heritability of multi-modal brain imaging phenotypes. Similarly, Col-
clough et al. report in Colclough et al. (2017) the heritability of
multi-modal functional connectivity profiles using 800 HCP subjects. An
extensive analysis is required to asses the heritability of the proposed
fingerprint and relate our findings to those in these recent studies.

Moreover, when building the subject proximity graph, we assumed
the independence of feature correspondences across modalities. How-
ever, a deeper analysis could be carried out to investigate false feature
correspondences and correlation between features correspondences
across modality. As mentioned before, other manifold embedding
methods like Locally Linear Embedding (LLE) (Roweis and Saul, 2000)
could also be employed for this step.

A limitation of the proposed framework stems from the choice of
descriptor for the bag of feature representation. While our data-driven
approach based on 3D SIFT descriptors is computationally efficient and
provides performances comparable to sophisticated measures like

224

Neurolmage 183 (2018) 212-226

FreeSurfer derived estimates of volume, thickness, and area, the bag of
feature representation is sparse and only captures a subset of relevant
information. Our choice for 3D SIFT descriptors was motivated by pre-
vious applications in segmentation, classification, registration and group
analysis (Toews et al., 2010, 2015; Toews and Wells, 2013), however,
other local descriptors could provide improved performance. Also, loss of
information occurs when creating the feature graph due to the approxi-
mation technique for finding nearest neighbors. This approximation is
necessary to reduce computational time.

Another limitation of our framework is that features and conse-
quently results are harder to interpret compared to standard voxel- or
region-based analyses. We plan to further explore these questions in our
next step, for example, by analyzing the impact of feature correspon-
dence localization on the fingerprint components, or interpreting the
contribution of individual modalities in single subject characterization.

In our study, we only used the multi-modal HCP dataset. Further in-
vestigations, considering multi-site variations and pre-processing pipe-
line impact, are needed to establish the generalizability of the proposed
approach. Moreover, we observed fingerprints of size 150 eigenvectors to
be suitable for twin/sibling identification. Yet, the number of dimensions
needed to accurately characterize individuals likely varies depending on
the application at hand. Here, we explored separability along the
dimension of zygosity, however predicting more subtle dimensions, such
as behavior (Shen et al., 2017) or markers of neuropsychiatric illness,
may well require additional features.

In this study, we analyzed data from sMRI, dMRI, and rfMRI. How-
ever, the proposed framework is generic and could be extended to other
modalities like task-fMRI, PET-MRI, and quantitative T1/T2 maps.
Finally, an interesting extension of this work would be to assess whether
our fingerprint can be used as a biomarker to identify subjects with
cognitive or neurological disorders. Publicly available data, for instance
from the ADNI dataset (Toews et al., 2010) or Parkinson's Progression
Markers Initiative (PPMI) dataset (Marek et al., 2011), could be used for
this analysis. Likewise, we plan to investigate how the proposed finger-
prints change over time (Yeh et al., 2016b) in a longitudinal setting,
observing the relative change in the contribution of individual modalities
towards single subject characterization.

5. Conclusion

We presented a brain fingerprint, based on manifold approximation,
for the multi-modal analysis of genetically-related subjects. In a rank
retrieval analysis, mean recall@k and mean average precision were used
to measure the relation between fingerprint similarity and genetic
proximity, as well as the contribution/complementarity of information
from different MRI modalities. Results indicated that a compact finger-
print of only 150 features could identify genetically-related subjects
better than a baseline using full images as features. Our experiments also
showed that each modality provides complementary information which
can uniquely identify some sibling pairs. Furthermore, we demonstrated
the benefit of considering multiple modalities in the fingerprint, com-
bined modalities leading to a better performance than considering these
modalities separately. Moreover, our analysis demonstrated the robust-
ness of the proposed fingerprint to various factors, including image
alignment, scan resolution, and subject age. The reproducibility of results
was also confirmed using retest scans from the HCP dataset, showing our
fingerprint to be robust to variability in image acquisition.

The usefulness of our fingerprint was assessed on the tasks of iden-
tifying incorrectly reported zygosity and retest/duplicate scans in large
dataset. Results of this experiment highlighted the effectiveness of our
fingerprint, with MAP values near 100% for all test cases. Moreover,
analyzing the distribution of features correspondences across the brain
revealed neuroanatomical regions (e.g., cerebellum, lateral ventricles,
ventral diencephalon, hippocampus and thalamus proper) with signifi-
cantly different match counts in MZ twins compared to DZ twins or full
siblings. This work could be extended by further investigating the
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differences, in terms of feature location and similarity, between dizygotic
twins and non-twin siblings. A deeper analysis of aging effects could also
be performed, for instance, using longitudinal data. Such analysis would
help understand the effect of neuroplasticity on individual brain
characteristics.
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